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Abstract

A worst-case heap is de�ned as a max -heap H of size N that forces the
sequence H.RemoveAll() of N consecutive calls H.RemoveMax() to perform the
maximum number of comps (comparisons of keys). Although it has been known
that for N ≥ 3, a single call H.RemoveMax() performs

CmaxRemoveMax(N) = blg(N − 1)c+ blg(N − 2)c (1)

comps in the worst case, it has also been known that H.RemoveAll() performs

less than
∑N
i=3(blg(i − 1)c + blg(i − 2)c) comps if N ≥ 13. Until recently, the

exact number of comps performed by H.RemoveAll() on a worst-case heap of
size N had remain unknown, except when N ≤ 12 or N = 2dlgNe − 1 (see [2]
for an analysis of those special cases).

I am going to expose a singularity of worst-case heaps (discovered and proved
in [4]). It states that if N = 2dlgNe − 4 and H is any heap of size N + 1 such
that H.RemoveMax() performs the worst-case number of comps (given by the
equality (1)) then the heap produced by the call H.RemoveMax() is not a worst-
case heap. It is a singular property, indeed, as for every N 6= 2dlgNe − 4, there
is a worst-case heap H of size N + 1 such that H.RemoveMax() on H performs the
worst-case number of comps and the heap produced by the call H.RemoveMax()
is a worst-case heap.

The above allowed me to conclude (in [4]) that for every natural number
N ≥ 2, the number of comps performed by H.RemoveAll() on a worst-case heap
H of size N is equal to:

2(N − 1)blg(N − 1)c − 2blg(N−1)c+2 + min(blg(N − 1)c, 2) + 4 + c, (2)

where c is a binary function on the set of integers de�ned by:

c =

 1 if N ≤ 2dlgNe − 4

0 otherwise.

Formula (2) together with a worst-case formula for MakeHeap (see [3] for
its derivation) yield the following worst-case number of comps performed by
Heapsort:

2(N − 1)dlgNe − 2dlgNe+1 − 2s2(N)− e2(N) + min(dlgNe, 3) + 5 + c,
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where s2(N) is the sum of digits1 of the binary representation of N and e2(N)
is the exponent of 2 in the N 's prime factorization2, or, for N ≥ 5,

2(N − 1) ( lg
N − 1

2
+ ε )− 2s2(N)− e2(N) + 8 + c,

where ε, given by:

ε = 1 + θ − 2θ and θ = dlg (N − 1)e − lg (N − 1),

is a continuous function of N (brie�y analyzed in [1]) that oscillates between
0 and and 1− lg e+ lg lg e ≈ 0.0860713320559342.

The above results allow for deciding if any given N -element heap is a worst-
case heap and if any given N -element array is a worst-case array for Heapsort,
both in

O(N logN)

time.
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1Equal to the number of 1's in the binary representation of N .
2Equal to the number of trailing 0's in the binary representation of N .


