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Abstract

A worst-case heap is defined as a maz-heap H of size N that forces the
sequence H.RemoveAll() of N consecutive calls H.RemoveMax() to perform the
maximum number of comps (comparisons of keys). Although it has been known
that for N > 3, a single call H.RemoveMax() performs

nggfveMax(N> = ng(N - 1)J + ng(N - 2)J (1)

comps in the worst case, it has also been known that H.RemoveAll() performs
less than Zﬁvzg(ng(i —1)] + [lg(i — 2)]) comps if N > 13. Until recently, the
exact number of comps performed by H.RemoveAll() on a worst-case heap of
size N had remain unknown, except when N < 12 or N = 218N — 1 (see [2]
for an analysis of those special cases).

I am going to expose a singularity of worst-case heaps (discovered and proved
in [4]). It states that if N = 28N — 4 and H is any heap of size N + 1 such
that H.RemoveMax() performs the worst-case number of comps (given by the
equality (1)) then the heap produced by the call H.RemoveMax() is not a worst-
case heap. Tt is a singular property, indeed, as for every N # 218 N1 — 4 there
is a worst-case heap H of size N + 1 such that H.RemoveMax() on H performs the
worst-case number of comps and the heap produced by the call HRemoveMax()
is a worst-case heap.

The above allowed me to conclude (in [4]) that for every natural number
N > 2, the number of comps performed by H.RemoveAll() on a worst-case heap
H of size N is equal to:

2(N — 1) [1g(N — 1)] — 2UeWV=DI%2 4 min(|lg(N — 1)],2) +4 +¢,  (2)
where c is a binary function on the set of integers defined by:

1if N<2lsNl _4

0 otherwise.

Formula (2) together with a worst-case formula for MakeHeap (see [3] for
its derivation) yield the following worst-case number of comps performed by
Heapsort:

2(N = 1)[lg NT = 2M8NTH — 255 (N) — e2(N) + min([Ig N1,3) +5 + ¢,
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where so(IV) is the sum of digits' of the binary representation of N and es(N)
is the exponent of 2 in the N’s prime factorization?, or, for N > 5,

2(N —1) (lg¥ +e)—252(N) —ea(N) + 8+,
where ¢, given by:
e=1+60-2%and 0 = [lg(N —1)] —lg(N — 1),
is a continuous function of N (briefly analyzed in [1]) that oscillates between

0 and and 1 —lge + lglge ~ 0.0860713320559342.

The above results allow for deciding if any given N-element heap is a worst-
case heap and if any given N-element array is a worst-case array for Heapsort,
both in

O(NlogN)

time.
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1Equal to the number of 1’s in the binary representation of N.
’Equal to the number of trailing 0’s in the binary representation of N.



