
On a Flaw in the Structure of Worst-case Heaps

MAREK A. SUCHENEK

California State University Dominguez Hills, Department of Computer Science, 1000 E.

Victoria St., Carson, CA 90747, USA, Suchenek@csudh.edu

Abstract

A worst-case heap is de�ned as a max -heap H of size N that forces the
sequence H.RemoveAll() of N consecutive calls H.RemoveMax() to perform the
maximum number of comps (comparisons of keys). Although it has been known
that for N ≥ 3, a single call H.RemoveMax() performs

CmaxRemoveMax(N) = blg(N − 1)c+ blg(N − 2)c (1)

comps in the worst case, it has also been known that H.RemoveAll() performs

less than
∑N
i=3(blg(i − 1)c + blg(i − 2)c) comps if N ≥ 13. Until recently, the

exact number of comps performed by H.RemoveAll() on a worst-case heap of
size N had remain unknown, except when N ≤ 12 or N = 2dlgNe − 1 (see [2]
for an analysis of those special cases).

I am going to expose a singularity of worst-case heaps (discovered and proved
in [4]). It states that if N = 2dlgNe − 4 and H is any heap of size N + 1 such
that H.RemoveMax() performs the worst-case number of comps (given by the
equality (1)) then the heap produced by the call H.RemoveMax() is not a worst-
case heap. It is a singular property, indeed, as for every N 6= 2dlgNe − 4, there
is a worst-case heap H of size N + 1 such that H.RemoveMax() on H performs the
worst-case number of comps and the heap produced by the call H.RemoveMax()
is a worst-case heap.

The above allowed me to conclude (in [4]) that for every natural number
N ≥ 2, the number of comps performed by H.RemoveAll() on a worst-case heap
H of size N is equal to:

2(N − 1)blg(N − 1)c − 2blg(N−1)c+2 + min(blg(N − 1)c, 2) + 4 + c, (2)

where c is a binary function on the set of integers de�ned by:

c =

 1 if N ≤ 2dlgNe − 4

0 otherwise.

Formula (2) together with a worst-case formula for MakeHeap (see [3] for
its derivation) yield the following worst-case number of comps performed by
Heapsort:

2(N − 1)dlgNe − 2dlgNe+1 − 2s2(N)− e2(N) + min(dlgNe, 3) + 5 + c,

Abstract submitted to: Southern California Theory Day USC, November 14, 2015

M. A. Suchenek: On a Flaw in the Structure of Worst-case Heaps 2

where s2(N) is the sum of digits1 of the binary representation of N and e2(N)
is the exponent of 2 in the N 's prime factorization2, or, for N ≥ 5,

2(N − 1) (lg
N − 1

2
+ ε)− 2s2(N)− e2(N) + 8 + c,

where ε, given by:

ε = 1 + θ − 2θ and θ = dlg (N − 1)e − lg (N − 1),

is a continuous function of N (brie�y analyzed in [1]) that oscillates between
0 and and 1− lg e+ lg lg e ≈ 0.0860713320559342.

The above results allow for deciding if any given N -element heap is a worst-
case heap and if any given N -element array is a worst-case array for Heapsort,
both in

O(N logN)

time.

Keywords: Heap, heapsort, sorting, worst case.

2010 MSC: 68W40 Analysis of algorithms

ACM Computing Classi�cation

Theory of computation: Design and analysis of algorithms: Data structures
design and analysis: Sorting and searching
Mathematics of computing: Discrete mathematics: Graph theory: Trees
Mathematics of computing: Continuous mathematics: Calculus

References

[1] Donald E. Knuth, The Art of Computer Programming, vol. 3, Addison-
Wesley Publishing, 2nd ed., 1997.

[2] Clyde P. Kruskal and Elia Weixelbaum, A worst case analysis of
heap-sort, Technical Report 018, Department of Computer Science, Courant
Institute of Mathematical Sciences, New York University, November 1979.

[3] Marek A. Suchenek, Elementary yet precise worst-case analysis of
Floyd's heap-construction program, Fundam. Inform., 120 (2012), pp. 75�
92. doi 10.3233/FI-2012-751.

[4] Marek A. Suchenek, A complete worst-case analysis of heapsort with ex-
perimental verifcation of its results (MS), http://arxiv.org/abs/1504.01459,
(2015).

Last modi�ed on November 17, 2015

1Equal to the number of 1's in the binary representation of N .
2Equal to the number of trailing 0's in the binary representation of N .

