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Abstract. The degree of undecidability of nonmonotonic logic is investigated. A proof is 
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1 Introduction 
 

While first-order logic is often thought of as the "correct" (whatever it means) 
logic for classical mathematics, nonmonotonic logic seems to have gained more 
acceptance in Artificial Intelligence. First-order provability relation is semi-
decidable but, in general, undecidable, that is, except for monadic languages, it is in 
class Σ1 \ ∆1. It turns out that similar relation in nonmonotonic logic that, in addition 
of deriving consequences of asserted axioms, is able to derive conclusions from  
a non-provability of certain sentences is more undecidable than the first-order logic is.  

For instance, the monadic case of logic of minimal entailment (think of it as  
a ∀-fragment of monadic first-order logic with semantics restricted to models that 
are relation-minimal) has a nonmonotonic consequence relation that is not even 
semi-decidable, or, more specifically, it is in class Π1 \ Σ1 (see [3] page 382 for  
a proof). Its prioritized (and more adequate for AI applications) variant is even more 
undecidable; its relation of satisfaction in a finite model, clearly a decidable (in ∆1, 
that is) kind of relation for any first-order logic, may fall into class Π1 \ Σ1 (see [4] 
page 277 for a proof).  

In this paper, we will prove that arithmetical non-r.e. sets (not in Σ1, that is) of 
sentences definable by nonmonotonic default logic are elements of ∆n+1 but not Σn 
nor Πn for some n ≥ 1. 
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2  The Kleene - Mostowski hierarchy 
 
We will follow notation from [1] and [2]. 

The Kleene-Mostowski hierarchy of arithmetical sets is defined as usual: 

Definition 2.1 

Σ0 = Π0 = {all recursive relations}. 
Σn+1 = {all projections of elements of Πn}. 
Πn+1 = {all complements of elements of Σn+1}. 
Finally, ∆n+1 = Σn+1 ∩ Πn+1.      □                                                                              
 

In particular, ∆1 is the set of all recursive relations (sometimes referred to as 
decidable relations) Σ1 is the set of all r.e. relations (sometimes referred to as semi-
recursive relations), and Π1 is the set of all co-r.e. relations (sometimes referred to as 
co-semirecursive relations). 

Definition 2.2 
A k-ary relation X is an upper limit of a k+1-ary relation R (notation:  

X = lim  n → ∞ R(n)) if, and only if, x ∈ X ≡ (∃n ∈ ω)(∀m ≥ n) x ∈ R(m). 
A k-ary relation X is a total limit of a k+1-ary relation R (notation:  

X = lim n → ∞ R(n)) if, and only if, both X = lim n → ∞ )(nR  and X  = lim  n → ∞  )(nR . 

 
A relation X is asymptotically decidable if, and only if, X is a total limit of 

some recursive relation. 
Any such a recursive relation is called an asymptotic computation of X.           

□  
 
Theorem 2.3 (due to Shoenfield and Kleene) 
 
The following are equivalent: 

1. X is asymptotically decidable 
2. X ≤T K (that is, X is Turing-reducible to the halting set K = {e | ϕe(e)↓}) 
3. X ∈ ∆2.                                                                                                      □   

 

Example 2.4 

K ⋈ K  is asymptotically decidable but not r.e. nor co-r.e. (that is,  K ⋈ K  ∈ ∆2 \  

(Σ1 ∪ Π1)), where 2x ∈ (A ⋈ B) if, and only if, x ∈ A and 2x + 1 ∈ (A ⋈ B) if, and 
only if, x ∈ B.               □                                                        
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Fact 2.5 

∆n is closed under set-theoretic operations.                                                            □  

3  Nonmonotonic Logics 
 

In this section we will focus on the undecidability of nonmonotonic logics 
that are based on the concept of default, the so-called default logics, whose relations 
of consequence may fall outside of Π1 ∪ Σ1 even in the purely propositional case. In 
what follows, we will use some standard terminology and definitions from default 
logic, a brief account of which can be found in [5].  

Let T be a (recursive) set of first-order sentences, ⊢ - the first-order 
provability relation, and Cn(T) - the set of first-order consequences of T. 

3.1  Nonmonotonic rules of inference 
 
The rules of nonmonotonic inference allow for deriving conclusion from non-
provability of some sentences. They, typically, have a form of: 
 

   T ⊬ ϕ  |  ... 
                                                     ─────── 

                                                         T ⊢ ψ 
 
The intentional meaning of the above rule is: if ϕ is not provable from T and ... then 
infer ψ. While the set Cn(T) of first-order consequences of T is r.e. in T, the set of 
first-order nonmonotonic consequences of T is usually not, for a similar reason the 

set K ⋈ K  K is not r.e.; it may need an oracle for  )Cn(T . 

In the case of default logics, the nonmonotonic consequence operation is 
usually defined in terms of fixed-points of a continuous consequence operator.  

Let D be a (recursive) set of the following nonmonotonic rules of inference, 
referred to as defaults: 
 

   ϕ | ◊ψ1 | ... | ◊ψn 
                                                   ──────────  . 
                                                                   χ 
Let the consequence operator ΦD(T, E) of T under the first-order consequences and 
rules from D relative to E be defined by: 
 

T ⊢ ϕ  | ¬ψ1 ∉ E |  ... | ψn ∉ E 
                                            ────────────────── . 
                                                        χ ∈ ΦD(T, E) 
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Definition 3.1.1 
The nonmonotonic closure of T relative to ΦD is a set E that 

1. contains T 
2. is closed under first-order (propositional, modal, etc.) consequence 
3. is a solution of the equation 

ΦD(T, E) = E.     
                 □  

Fact 3.1.2 
Operator ΦD(T, E) is: 

1. monotone w.r.t. T (that is, for T ⊆ T', ΦD(T, E) ⊆ ΦD(T', E))  

2. non-monotone w.r.t. E  (but monotone w.r.t. E ) 
3. continuous w.r.t. both arguments(because all defaults rules of inference are 

finitary).                                                                           □  
 
Since one can express completeness using a recursive set of defaults, despite its 

seemingly simplicity the degree of undecidability of nonmonotonic logic with  
a recursive set of axioms may be enormously high. 
 
Example 3.1.3 
Let D consist of all rules of the form 
 

true | ◊ψ 
───── 

                                                                ψ 
where ψ is a first-order sentence. If E is a consistent solution of the equation 
 

ΦD(PA, E) = E 
 

(where PA is the set of axioms of Peano Arithmetic) then E is not arithmetical  
(a classic result due to Gödel).                                                                                    □  

Theorem 3.1.4 
For any recursive T, recursive set of defaults D, and every nonmonotonic closure E 
of T relative to D, if E is arithmetical and not in Σ1 then  
 

E ∈ ∆n + 1 \ (Σn ∪  Πn) for some n ≥ 1.  
 

Proof is based on an observation that since all operations involved in the                                                                                   

definition of Φ can be reduced to intersections of E with r.e. sets, the set E  defined 
by the above fixed-point equation, unless a member of Σ1, cannot be more 

undecidable than E .  
Indeed, let E be arithmetical. Let n be the smallest number such that E ∈ Σn ∪ 

Πn. We have: 
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χ ∈ ΦD(T, E) if, and only if, ∃ψ1...∃ψn ∃θ1...∃θm ∃ϕ <ψ1,...,ψn> ∉ E* and 
<θ1,...,θm> is a proof of ϕ from T and 

 

                                               ϕ | ◊ψ1 | ... | ◊ψn 
                                              ────────── ∈ D 
                                                             χ 
 

if, and only if, ∃x ∃y x ∈ Cn(T) and y ∈ E * & f(x, y, χ) ∈ D, 
where f is a recursive function. Hence, by the recursive eumerability of Cn(T) and 
the recursiveness of D, ΦD(T, E), and, therefore, E, is the intersection of an r.e. set 

with E * and with a recursive set.  

Assume E ∈ Σn \ Πn, where n ≥ 2, that is, E  ∈ Πn \ Σn. Now, since E  and  

E * have the same degree of undecidability, it follows that E is the intersection of  
a Πn \ Σn-set with a Σ1-set, which is in Πn - a contradiction. 

Assume E ∈ Πn. Because E  ∈ Σn, any projection of E  is in Σn. So,  
E = ΦD(T, E) ∈ Σn. Hence, E ∈ Σn ∩ Πn = ∆n.    □

                                                 
Note. If, for instance, D is empty then its nonmonotonic closure E coincides 

with Cn(T), which for some recursive T is in Σ1 \ Π1 (r.e. but non-recursive, that is).  

3.2 Asymptotic computation of E 
 

Let E ∈ ∆2, that is, let E = lim n → ∞ f(n) for some recursive relation f. By the 
continuousness of the operator ΦD, ΦD(T, E) = lim n → ∞ ΦD(T, f(n)). Therefore, 
ΦD(T, f(n)) is an asymptotic computation of E as well. 

Example 3.2.1: Autoepistemic Logic 
Autoepistemic logic allows for a modal operator □ (which is not related to the 
operator ◊ used in the definition of defaults in this paper) instead of quantifiers. Its 
nonmonotonic rules of inference are: 
 

true  |  ◊ψ  
                                                     ────── 
                                                        ¬□¬ψ  
 

where ψ is a first-order sentence. The operator Φ is also closed under consequences 
of modal logic S5, in particular, closed under the monotonic rule 
 
                                                               ϕ   
                                                             ── . 
                                                              □ϕ 
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If follows that for □-free recursive sets T, the nonmonotonic closure of T relative the 
above is in ∆2 (in ∆1 if Cn(T) is recursive). More specifically, it is recursive in  

Cn(T) ⋈  )(TCn . Therefore, any asymptotic computation f(n) of Cn(T) ⋈ 

)(TCn yields, by the continuousness of the operator Φ, an asymptotic computation 

ΦD(T, f(n)) of the closure. 
However, if T contains sentences with occurrences of □ then the above 

closure may or may not be in ∆2. Of course, if it is not in ∆2 then, by the Theorem 
3.1.4, if it is arithmetical then it is in  ∆n + 1 \ (Σn ∪  Πn) for some n ≥ 2.                   □  
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