
Indefinite Models and Parallel Positive Resolution
for Disjunctive Stratified Logic Programs

Marek A. Suchenek
California State University – Dominguez Hills

Carson, CA 90747 U.S.A.

e-mail addr: Suchenek@csudh.edu

Abstract

The subject of this paper is the semantics of
propositional disjunctive logic programs and
indefinite deductive data bases. The con-
cept of the indefinite model of a disjunctive
logic program is introduced. The algorithm of
computing the indefinite model and an algo-
rithm of evaluation of clauses in the indefi-
nite model, both using a parallel positive vari-
ant of resolution, are presented. The evalua-
tion algorithm is extended to cover the strat-
ified programs. The complexity of these algo-
rithms and their scope of applicability is an-
alyzed.

Key words: hierarchically-minimal semantics, indef-
inite deductive data bases, complexity of minimal en-
tailment, prioritized circumscription,

1 Introduction

In this paper we investigate a resolution based method
for evaluation of queries to propositional indefinite
data bases by means of, what we call, an indefi-
nite modeling. Our approach extends the well known
results of research in semantics of negation, partic-
ularly the closed-world assumption, circumscription,
and minimal model theory (cf.[Lif85a, Lif85b, YH85,
Suc89, SS90, Suc90, Suc93, Suc94]). Its generalization
over non-propositional data bases (i.e., with universal
quantifier ∀) is the subject of forthcoming [Suc97].

Under the minimal-model semantics, a query q to a
disjunctive deductive data base p is answered posi-
tively iff q is true in all minimal models of p. This fact
is usually articulated by p `min q (p minimally en-
tails q). The minimal-model semantics has the follow-
ing neat characterization in terms of first-order prov-
ability (propositional, in this paper) of positive (i.e.,
negation-free) sentences:

p `min q iff CnPos(p ∧ q) ⊆ Cn(p) (1)

where CnPos(X) is the set of all positive logical con-
sequences of X, and Cn is the set of all logical con-
sequences of X (see [YH85] for the proof of the case
of q being a disjunction of negative ground literals,
and [Suc89] for the proof of the general case with uni-
versal quantifier). Intuitively, the right-hand side of
(1) means that every positive consequence of p ∧ q is
provable from p itself. In particular, if q is a positive
sentence then p `min q is equivalent to p ` q. Conse-
quently, characterization (1) yields the following corol-
lary: p and p′ have the same positive consequences iff
for every clause q, p `min q and p′ `min q are equiva-
lent.

The above fact gives rise to the following scheme of
deciding p `min q. If p′ is a formula equivalent to the
conjunction of all positive consequences of p then de-
cide p′ `min q instead of p `min q. It is being hoped
that, at least in certain cases, one can find p′ for which
the decision problem p′ `min q is easier than p `min q.
Of course, p′ may be assumed to be a positive formula.
In this paper we consider two forms of such alternate
p′: a positive reduced disjunctive form (DF), and a
positive reduced conjunctive form (CF). The former
constitutes, in fact, the familiar set of minimal mod-
els of p, and allows for straightforward algorithm of
deciding p′ `min q. We call the latter an indefinite
model of p, and develop for it a method of deciding
p′ `min q which uses the criterion (1) without actually
computing all the positive consequences of p′∧q. This
method involves a transformation of data base p into
suitable DF or CF , using a parallel positive variant
of resolution, complete with respect to positive con-
clusions. Although in many cases, computing an in-
definite model p′ of p a program (also a CF -formula)
seems quite easy, the problem p′ `min q for p′ in a
conjunctive form is far from being trivial.

Our method of indefinite modeling extends over strat-

ified data bases whose semantics is given by the
hierarchically-minimal entailment `Hmin of [SS90] (or
equivalently, by prioritized circumscription of [Lif85a,
Lif85b]). This stratified case and its semantics consti-
tutes the central point of interest in this paper, and is
briefly introduced below.

The very form of a stratified program p (specifically,
the occurrences of negation in the bodies of its clauses)
defines a hierarchy L of first-order languages Li which
extend alphabets of one another, and partitions p onto
strata σi. The concept of hierarchically-minimal model
of p differs from the regular (that is, non-hierarchical)
one in that its construction follows a series of model
minimizations, one for each stratum σi. The “basis
step” in this inductive process consists of the construc-
tion of a minimal model of the innermost stratum σ0

of p in its smallest language L0. The “inductive step”
proceeds as follows. Let the language L′ of stratum σ′

be the closest extension of the language L of stratum σ
in the hierarchy L. The hierarchically-minimal model
of σ′ in L′ is obtained by expansion of hierarchically-
minimal model of σ in L to a minimal model of σ ∪ σ′
in L′. This step requires minimization of a model of
σ ∪ σ′ in L′, where the only predicates that are al-
lowed to vary are those in L′ \ L, and is possible for
every stratified program p. Finally, the hierarchically-
minimal entailment p `Hmin q is defined as the truth-
fulness of q in all hierarchically-minimal models of p.

Computing a hierarchically-minimal model of a strati-
fied logic program p is, generally, much more complex
than computing just a minimal model of p, and makes
the direct verification of q in all hierarchically-minimal
models of p impractical. In Section 5 we present an al-
ternative decision algorithm for p `Hmin q based on
the concept of the weakest precondition which, in a
way characteristic to abductive reasoning, allows for
backward evaluation of q in the indefinite model of p
without actually computing models for relevant strata
of p. It turns out that our approach, by appropriate
generalization of the concept of stratification, elimi-
nates the need of clauses with negation in the body.

Since this paper describes a research in progress, the
results and ideas presented here are preliminary and
have no pretenses to completeness. Moreover, most of
the contents of Sections 2 and 3 is known from
elsewhere (albeit in a different notation) and
has been included for comparison. New ideas
and results are offered in Sections 4 and 5.

2 Notation, etc.

We confine ourselves to a first-order language L with-
out equality and variables (and, therefore, without

quantifiers), with usual Boolean connectives ∨,∧,¬
(we treat all other connectives as appropriate abbrevi-
ations), finitely many predicate symbols A,B, ..., and
finitely many constants 1, 2, ...,M . We denote formu-
las of L by p, q, r, We call atomic formulas of L
propositional variables (or simply variables) and place
their arguments in subscripts rather than in paren-
theses (e.g., we write B3,7 instead of B(3, 7)). L has
only finitely many distinct propositional variables; we
denote their number by N . If ϕ is a set of formulas
then ∧ϕ stands for ∧p∈ϕp, with ∧0 interpreted as true,
and dually for ∨ϕ, with ∨0 interpreted as false. ¬ϕ
means {¬p|p ∈ ϕ}. We extend the above convention
over sets of sets of formulas in an obvious way; e.g.
∧{ϕ1, ..., ϕn} means {∧ϕ1, ...,∧ϕn}.

A clause carrier is a set of literals with every proposi-
tional variable occurring at most once. A program car-
rier is a set of clause carriers. We use small Greek let-
ters to denote clause carriers, and capital Greek letters
for program carriers. Both program and clause carri-
ers are finite since L has only finitely many distinct
variables. A clause is a formula of the form ∨ϕ, where
ϕ is a clause carrier. A program (for simplicity we use
this term instead of indefinite deductive data base) is a
formula of the form ∨Φ, where Φ is a program carrier,
that is, a program is a finite set of clauses. Since the
meaning of ∨Φ is the same as ∧∨Φ, we will use ∨Φ and
∧ ∨Φ interchangeably. If X is a carrier, or a program
or a clause, |X| denotes the size of X measured as the
number of occurrences of propositional variables in X,
while card(X) denotes the number of elements of X.

A term is a formula of the form ∧ϕ, and is called a
minterm if ϕ contains occurrences of all propositional
variables of L. A conjunctive form formula (abbr: CF)
is a formula of the form ∧∨Φ. Similarly, a disjunctive
form formula (abbr: DF) is a formula of the form
∨ ∧ Φ. If all elements of ∧Φ are minterms then ∨ ∧
Φ is called a disjunctive normal form formula (abbr:
DNF). A set Y of subsets of X is called an anti-chain
in X if no two distinct elements of Y are subsets one
of another. If Φ is an anti-chain then ∧ ∨ Φ is called
a reduced conjunctive form formula (abbr: RCF), and
∨∧Φ a reduced disjunctive form formula (abbr: RDF).

Adjective positive refers to formulas and carriers with-
out occurrences of negation, negative refers to those
equivalent to negated positive ones. For instance,
A ∨ B is a positive formula, while ¬(¬A ∧ ¬B) and
A ⊃ B are not (A ⊃ B is an abbreviation for ¬A∨B).
Therefore, in the sense of this convention, positive
clauses (or programs) are elsewhere called bodiless
clauses (or programs). Bodiless definite programs
constitute the easy case in traditional logic program-
ming; they coincide with their minimal Herbrand mod-

els. Indefinite bodiless programs are much less triv-
ial, and will serve as indefinite models. If ϕ is a
clause carrier then ϕPos denotes the set of all pos-
itive literals of ϕ. If Φ is a program carrier then
ΦPos = {ϕ ∈ Φ|ϕ is positive} and ΦPos = {ϕPos|ϕ ∈
Φ}. For instance, {{A,¬B}, {C}}Pos = {{C}}, while
{{A,¬B}, {C}}Pos = {{A}, {C}}. We use similar
convention for ΦNeg and ΦNeg.

Minterms ∧ϕ may be interpreted as propositional
models of formulas of L. For instance, minterm
∧ϕ is a model of clause ∨ψ iff ϕ ∩ ψ is non-empty,
which, of course, is equivalent to ∧ϕ ` ∨ψ. There-
fore, DNF -formulas ∨ ∧ Φ constitute sets of propo-
sitional models of formulas of L. Because every
element of a DNF -formula ∧Φ is a minterm, Φ
is unambiguously determined by its positive frag-
ment ΦPos; therefore we will think of ΦPos as of
the set of models. Perhaps abusing the notation,
we use CWA to denote the function which recon-
structs Φ from ΦPos. For instance, if L contains
only two variables A and B, CWA({A}, 0, {A,B}) =
{{A,¬B}, {¬A,¬B}, {A,B}}. We denote by Mod(p)
the set of all models of p. If Φ is the set of models of p
(that is, Φ is positive, ∨∧CWA(Φ) is a DNF -formula,
and ∨ ∧ CWA(Φ) ≡ p is a propositional tautology)
then the set min(Φ) of all ⊆-minimal elements of Φ is
the set of minimal models of p, which we also denote
by Modmin(p). Modmin(p) is a positive anti-chain,
and for every positive anti-chain Ψ, there is a formula
p of L (e.g., ∨ ∧ Ψ) with Ψ = Modmin(p). Therefore
sets of minimal models may be identified with posi-
tive RDF -formulas. It follows from (1) that a positive
anti-chain Ψ is the set of minimal models of formula
p iff ∨∧Ψ is logically equivalent to the conjunction of
all positive clauses which are logical consequences of p
(there are only finitely many of them).

Relation of minimal entailment `min is defined by:
p `min q iff Modmin(p) ⊆ Mod(q), that is, every
minimal model of p is a model of q. Question “Does
p `min q?” makes a formal articulation of query “q?”
to program p. Of course, p `min ∧ϕ iff for every
q ∈ ϕ, p `min q. Therefore rather than allowing arbi-
trary programs as queries, we will restrict ourselves to
clauses. By the above observation, this will cover all
reasonable forms of queries to deductive data bases, at
least in the propositional case.

It follows that for every DF -formula ∨∧Φ, the follow-
ing are equivalent: ∨ ∧ Φ `min q, ∨ ∧ (ΦPos) `min q,
∨∧(min(ΦPos)) `min q, ∨∧(CWA(min(ΦPos))) `min
q, and ∨ ∧ (CWA(min(ΦPos))) ` q. The last state-
ment reduces to a finite number of inclusions for any
clause q. Therefore for deductive data bases in dis-
junctive form, deciding `min is straightforward and

can be carried out in polynomial time with respect to
the size of a data base and its query.

Sets of positive RCF formulas ∧ ∨ Φ define indefinite
models of formulas of L: ∨Φ is an indefinite model
of formula p (notation: Ind(p)) iff ∧ ∨ Φ is logically
equivalent to the conjunction of all positive logical con-
sequences of p (and therefore, to ∨ ∧Modmin(p)). It
follows from (1) that for any formulas p and q,

p `min q iff Ind(p) `min q. (2)

3 Minimal Modeling

In this section we discuss some tractable cases of decid-
ing p `min q by direct verification of q in all minimal
models of p. We call this verification process a minimal
modeling.

The set Mod(p) of models of program p is a positive
carrier Φ, such that the DNF−formula ∨ ∧CWA(Φ)
is logically equivalent to p. The set Modmin(p) is
the ⊆ −dense anti-chain Ψ in Φ. Given a positive
carrier Φ, verifying if all elements of ∧Φ are mod-
els of a clause ∨ψ is easy because of simplicity of
CWA(∧Φ): for any ϕ ∈ Φ, ϕ is a model of ∨ψ iff
(ψPos ∩ ϕ) ∪ (ψNeg \ ϕ) is non-empty. (A straight-
forward generalization of this scheme can be used for
equally easy verification of a more general case of ψ
being a set of any clauses, not just a set of literals;
recall that the problem ∨CWA(∧Φ) ` q is in P for
arbitrary positive carrier Φ and formula q.) Obvi-
ously, Modmin(p) ⊆ Mod(p), which implies, in the
case when p ` q holds, that the direct verification of
p `min q is never more complex than the direct ver-
ification of p ` q. If p ` q is not the case then in
some cases deciding p `min q may be more costly than
the direct verification of p 6` q, since one can (inci-
dentally) hit a non-minimal model of p which is not a
model of q right at the very beginning of the verifica-
tion process. However, the ratio of the average size of
Mod(p)\Modmin(p) to the average size of Modmin(p)
is approx.

√
2N−1. Therefore, hunting for an element

of Mod(p) \Modmin(p) which is not a model of q is
very likely to be more costly than checking if q is true
in all elements of Modmin(p).

This observation gives rise to a hope that `min is more
often feasibly verifiable than ` is. For instance, a pro-
gram ϕ = {A1 ∨ ... ∨ An, B1 ∨ ... ∨ Bn}, where Ai’s
and Bj ’s are distinct variables, has only n2 minimal
models, but it has (2n − 1)2 models. Thus the direct
verification of ∧ϕ `min q is tractable in this case, while
direct verification of ∧ϕ ` q, in the worst case, is not.
And, of course, any definite program has only one min-

imal model (the least fixed-point of the operator Tp),
which makes the direct verification of ∧ϕ `min q even
easier.

The process of verification of minimal entailment `min
by minimal modeling consists of two phases. First,
given program ∨Φ, the set Modmin(∨Φ) has to be con-
structed. Second, given a query ∨ψ, the non-emptiness
of (ψPos ∩ ϕ) ∪ (ψNeg \ ϕ) for every minimal model
ϕ ∈ Modmin(∨Φ) must be verified. The latter pro-
cess can be done in O(|Modmin(∨Φ)| × |ψ|) steps in
the worst case. The former may be more costly; how-
ever the time spent on its execution will be spread
over presumably a large number of queries to the same
program ∨Φ. Below, we discuss two cases when this
process leads to a feasible computation.

Case 1. If reducing of ∨Φ to a DNF−formula
∨ ∧ Mod(∨Φ) can be done quickly (in polynomial
time), then Modmin(∨Φ) may also be built in a poly-
nomial time; having Mod(∨Φ) one can purge all the
non-minimal elements of Mod(∧ϕ), which obviously
can be done in O(|Mod(∨Φ)|2 ×N2), (where N is the
number of variables in L).

Case 2. If there are only few (polynomially many),
say K, structures for L which do not include mini-
mal models of ∨Φ then Modmin(∨Φ) may be built in
polynomial time, according to the following algorithm.
Think of relation of inclusion between sets of variables
of L as of a digraph G with the empty set on the top
and the set of all variables on the bottom, with edges
going top down, connecting sets with their least proper
supersets. A straightforward modification of breath-
first search traversal of G with concurrent checking if
the current vertex v is a model of ∨Φ (in O(N2) worst-
case time) and cutting of its children in the case v is
a model of ∨Φ, will take K + |Modmin(∨Φ)| steps.
Because |Modmin(∨Φ)| ≤ 2K, the entire process will
stop in O(N2×K) worst-case time, which of course is
polynomial.

Minimal modeling has several obvious drawbacks.
First of all, the biggest cardinality of Modmin(p) is(

N
dN2 e

)
(cardinality of the longest anti-chain in a

power set of an N -element set), or approximately,√
2
π ×

2N
√
N

, which makes its computation infeasible ex-
cept for small values of N . For instance, let us consider
a well known (cf. [CR79, Hak85, BT88]) hard case
for resolution proofs, the pigeonhole principle (PHP).
Let PHP− be

{{A1,1, ..., A1,n},
...

{An+1,1, ..., An+1,n}}

and PHP+ be

{{A1,1, A2,1}, {A1,1, A3,1}, ..., {An,1, An+1,1},
...

{A1,n, A2,n}, {A1,n, A3,n}, ..., {An,n, An+1,n}},

where all Ai,j ’s are distinct variables with the inten-
tional interpretation of “i-th pigeon sits in the j-th
hole.” Obviously, ∧ ∨ PHP− ` ∨ ∧ PHP+ holds: it
states that if there are n + 1 pigeons occupying n pi-
geonholes then at least one pigeonhole must accommo-
date at least two pigeons. Because PHP+ is a positive
carrier, ∧∨PHP− ` ∨∧PHP+ and ∧∨PHP− `min
∨ ∧ PHP+ are equivalent. Hence ∨ ∧ PHP− `min
∧∨PHP+ holds as well. ∧∨PHP− hasN = n×(n+1)
variables and roughly 2N models, which makes a direct
verification of ∧ ∨ PHP− ` ∨ ∧ PHP+ (as well as its
proof by resolution) intractable. Number of minimal
models of ∧ ∨ PHP− is nn+1. Although a consid-
erable improvement over ` (with ratio approximately
(2

n
√
n

)N), this size of Modmin(∧∨PHP−) leaves direct
verifiability of ∧ ∨ PHP− `min ∨ ∧ PHP+ out of the
question.

Second, even relatively easy queries will involve their
verification in all minimal models of the program in
question. For instance, a program ∨Φ = {A1 ∨ ... ∨
An, B1 ∨ ... ∨ Bn} has n2 minimal models, therefore
direct verification of straightforward Φ `min ∨ ∨ Φ
will involve Ω(n3) steps (plus the time to compute
Modmin(Φ)).

Third, adding new clauses to a program ϕ may con-
siderably change Modmin(ϕ) (in fact, Modmin(ϕ) and
Modmin(ϕ′), where ϕ ⊆ ϕ′, may be disjoint). In this
case, the costly process of computation of Modmin(ϕ)
must be repeated.

4 Indefinite Modeling

As we have seen, converting a program ∨Φ into its
positive RDF -formula ∨ ∧Modmin(∨Φ) may be very
costly, as the size of Modmin(∨Φ) can be exponential
in the size of ∨Φ. It may also happen that converting
a program ∨Φ into an equivalent DNF -formula is an
exponentially lengthy process, even if |Modmin(∨Φ)| is
only polynomial in |∨Φ|. However, because a program
is a CF -formula itself, converting it into a positive
RCF -formula ∧ ∨ Ind(∨Φ) should be much easier, at
least in some cases. For instance, if ∨Φ is a positive
program then Ind(∨Φ) is a result of purging from ∨Φ
all the clauses which are subsumed by other clauses
of ∨Φ, which can be done in O(| ∨ Φ|2 × N2) time.
Existence of cases like this gives rise to use of indefinite
modeling instead of minimal modeling. In this section
we present and analyze algorithms for converting a

program ∨Φ into its positive RDF -formula Ind(∨Φ),
and for deciding Ind(∨Φ) `min q. Both algorithms
are based on the following parallel positive variant of
resolution:

q ∨ ¬R1 ∨ ... ∨ ¬Rn | p1 ∨R1 | . . . | pn ∨Rn
q ∨ p1 ∨ ... ∨ pn

, (3)

where n > 0, Ri’s are propositional variables, and q
and pi’s are distinct positive clauses with no occur-
rences of variables R1, ..., Rn.

Both algorithms use the operator of direct positive
consequence C, which assigns to a set of clauses ∨Φ
the set C(∨Φ) of all positive clauses which can be de-
rived from ∨Φ by subsumption and a single application
of an instance of (3). Given a program ∨Φ, Algorithm
4.1 computes Ind(∨Φ).

Algorithm 4.1

K := min(∨Φ); I:=KPos;J :=K \ I;
while C(I ∪ J) is not subsumed by I do

I := min(I ∪ C(I ∪ J));
{At this point, all positive consequences }
{of ∨Φ are subsumed by I }
{Therefore, I = Ind(∨Φ) }
return(I);

Here, min(X) is the set of all clauses of X which are
not subsumed by other clauses of X. The following
lemma guarantees partial correctness of Algorithm 4.1
(and, in fact, the completeness of the parallel positive
variant of resolution with respect to positive conse-
quences).

Lemma 4.2 Let Φ be a program carrier. If there is a
positive clause q which is a logical consequence of ∨Φ
but is not subsumed by any of the clauses of ∨ΦPos

then C(∨Φ) is not subsumed by ∨ΦPos.

Proof. Let Ψ = Φ \ ΦPos. Assume that C(∨Φ)
is subsumed by ∨ΦPos, that is, for every ψ ∈ ∨Ψ,
C(∨ΦPos ∪ {ψ}) is subsumed by ∨ΦPos. Hence,
Mod(∨ΦPos) = Mod(∨ΦPos ∪{ψ}∪C(∨ΦPos ∪{ψ})),
that is, Modmin(∨ΦPos) = Modmin(∨ΦPos ∪ {ψ} ∪
C(∨ΦPos ∪ {ψ})). On the other hand, straightfor-
ward verification yields Modmin(∨ΦPos ∪ {ψ}) =
Modmin(∨ΦPos ∪ {ψ} ∪ C(∨ΦPos ∪ {ψ})). From this
we conclude thatModmin(∨ΦPos) = Modmin(∨ΦPos∪
{ψ}) = Modmin(∨ΨPos ∪ ∨Ψ) = Modmin(∨Φ), that
is, ∨ΦPos `min ∧ ∨ Φ. Therefore, by thm. 4.3 in
[Suc89], ∧ ∨ Φ ∈ cwaS(∨ΦPos), that is, by definition
of cwaS (def. 3.1 in [Suc89]), all positive consequences
of ∨Φ are provable from ΦPos. 2

To evaluate the complexity of Algorithm 4.1, let us
consider its following variant which calculates an “un-
purged” version Ind∗(∨Φ) of Ind(∨Φ).

K := ∨Φ; I:=KPos;J :=K \ I;
while C(I ∪ J) is not subsumed by I do

I := I ∪ C(I ∪ J);
return(I);

We have: Ind(∨Φ) = min(Ind∗(∨Φ)). Obviously,
the number of iterations of the while loop is the same
for both algorithms. Because this number cannot be
greater than the number of elements in Ind∗(Φ) (which
is finite; actually, it can be shown that the number of
iterations is not greater then |Φ|), Algorithm 4.1 halts,
and therefore, is totally correct, that is, it returns the
indefinite model Ind(∨Φ) of ∨Φ.

Purging out non-minimal (with respect to subsump-
tion) clauses form I ∪ C(I ∪ J) can be done as a part
of checking whether I does not subsume C(I ∪ J),
which takes O(|I| × |C(I ∪ J)|) time in the worst
case, that is, O(|Ind∗(∨Φ)| × |C(∨Φ ∪ Ind∗(∨Φ))|).
Therefore, the entire algorithm executes in O(|∨Φ| ×
|Ind∗(∨Φ)| × |C(∨Φ ∪ Ind∗(∨Φ))|) worst-case time. If
the size of C(∨Φ∪ Ind∗(∨Φ)) is polynomial in the size
of Φ (say, O(|Φ|c)) then the worst-case running time
of Algorithm 4.1 is polynomial in |Φ| too (O(|Φ|2c+1)).
There are two kinds of hard cases for Algorithm 4.1:
when |Ind(Φ)| is large (e.g., exponential) in |Φ|, and
when |Ind(Φ)| is small (e.g., polynomial) in |Φ| but
|Ind∗(∨Φ)| is large in |Φ|. For instance, |Ind({A1∨...∨
An, B1 ∨ ¬A1, ..., Bn ∨ ¬An})| = 2n, which illustrates
the first case. Since Algorithm 4.1 is based on reso-
lution and |Ind(∨PHP− ∪ ∨¬PHP+)| = 0 (because
∨PHP−∪∨¬PHP+ is inconsistent), PHP necessarily
constitutes the second kind of a hard case (otherwise
Algorithm 4.1 would yield a resolution based proof of
PHP with only polynomially many steps, which is im-
possible; cf. [CR79]).

Now, we turn to the decision algorithm for `min.

Theorem 4.3 For every positive program ∨Φ and ev-
ery clause q, Ind(∨Φ) `min q iff Ind(∨Φ) subsumes
C(Ind(∨Φ) ∪ {q}).

Proof. We inter from Lemma 4.2 that C(Ind(∨Φ) ∪
{q}) subsumes all positive clauses provable from ∨Φ∪
{q}. By def 3.1 and thm. 4.3 in [Suc89], Ind(∨Φ) `min
q iff all positive clauses provable from Ind(∨Φ) ∪ {q}
are subsumed by Ind(∨Φ). From this we conclude the
thesis. 2

Having calculated Ind(∨Φ), the problem of ∨Φ `min q

reduces by (2) to Ind(∨Φ) `min q, and by Theorem
4.3 to the following question:

Is C(Ind(∨Φ) ∪ q) subsumed by Ind(∨Φ)? (4)

which may be answered in O(|Ind(∨Φ)|×|C(Ind(∨Φ)∪
{q})|) worst-case running time.

We conclude this section with examples of easy cases
for indefinite modeling. For instance, allowing for at
most one negation per clause makes Ind(∨Φ) easy to
calculate. Below is another example which allows for
fast computation of Ind(∨Φ).

Theorem 4.4 If the length of every positive clause of
∨Φ is in O(1), and every literal occurring negatively
in Φ has the total number of occurrences in Φ at most
2 then Algorithm 4.1 runs in polynomial worst-case
time.

Proof follows from the fact that there may be at most
2λ×N applications of a positive instance of resolution
during the execution of Algorithm 4.1, where λ is the
maximum length of a positive clause in ∨Φ. 2

If card(Ind(∨Φ)) is in O(1) then simple applica-
tion of distributive law yields Modmin(∨Φ) and de-
cision Ind(∨Φ) `min q in polynomial time. Analy-
sis of the one-step parallel positive resolution yields
a number of characterizations of other easy cases for
∨Ind(∨Φ) `min q. For instance, for each variable R,
Ind(∨Φ) `min ¬R iff R does not occur in Φ. Here is
another one.

Theorem 4.5 If the number of negative literals of q
having more than 1 positive occurrence in Ind(∨Φ)
is O(1) then deciding (4) can be performed in
O(|Ind(∨Φ)|2 × |q|) worst-case time.

Proof. Generating C(Ind(∨Φ) ∪ {q}) takes
O(|Ind(∨Φ)| × |q|) in the worst-case (all possible ap-
plications of parallel positive instances of resolution
involving only one non-positive formula q), and then
checking subsumption takes O(|Ind(∨Φ)|2 × |q|). 2

Theorem 4.5 allows for speeding up Algorithm 4.1 for
programs Φ with O(1) occurrences of negated literals
(which seems to be a typical case for deductive data
bases).

Algorithm 4.6

I := min(∨ΦPos);
for π ∈ perm(min(Φ \ ΦPos)) do

for q ∈ π do
I := min(I ∪ C(I ∪ q));

return(I);

where perm(X) is the set of all enumerations of X.

Theorem 4.7 If Φ has O(1) occurrences of negated
literals then Algorithm 4.6 computes Ind(Φ) in
O(|Ind(Φ)|2) worst-case running time.

Proof. Running time is evaluated by application of
Theorem 4.5, letting |q| ∈ O(1). Partial correctness
follows from analysis of genealogical graph of any pos-
itive formula in Ind(Φ) computed by Algorithm 4.1:
it follows that positive clauses p which are matched
in (3) with their non-negative ancestors produce chil-
dren which are subsumed either by ancestors of p or
by siblings of p. 2

Obviously, if Φ contains no negations and q is a posi-
tive clause then Φ `min q can be decided in O(|Φ|×|ψ|)
worst-case time. Below is a summary of easy cases.

i. Computation of Ind(∨Φ) is polynomial in |Φ| if:

(a) every clause of ∨Φ is O(1) long, and each
of its negative literal occurs at most twice
(positively or negatively);

(b) Φ has O(1) occurrences of negative literals.

ii. Decision of Ind(∨Φ) `min q is polynomial in
|Ind(∨Φ) ∪ {q}| if:

(a) card(Ind(∨Φ)) is in O(1);
(b) there are only O(1) negative literals of q

with more than one positive occurrence in
Ind(∨Φ);

(c) (a special case) there are only O(1) negative
literals in q;

(d) (a special case) |q| is in O(1).

iii. Decision of Ind(∨Φ) `min q is polynomial in
| ∨ Φ ∪ {q}| if:

(a) ∨Φ ∪ {q} has O(1) occurrences of negative
literals;

(b) any other combination of subcases in (i) and
(ii) holds.

5 Stratification

The method of indefinite modeling generalizes nicely
over stratified programs. Quite surprisingly, the con-
cept of indefinite model does not need any modifica-
tions in this case. This is a considerable advantage
of indefinite modeling over minimal modeling which
requires recomputation of the set of minimal models
after stratification has been imposed or changed.

In this Section we analyse the case of programs with
two strata, which covers the “inductive step” of the

definition of hierarchically-minimal model (end of Sec-
tion 1). Since the “basis step” of that definition re-
duces to the minimal-model semantics, a routine in-
duction over any tree hierarchy L of first-order lan-
guages extends our approach over programs with ar-
bitrary finite number of strata. We distinguish a non-
empty sublanguage L′ of L, which partitions every
program ∨Φ onto two strata: ∨Φ′ and ∨Φ′′, where
Φ′ = Φ ∩ P(L′), and Φ′′ = Φ \ P(L′). ∨Φ′ consists of
all clauses of ∨Φ which do not contain occurrences of
literals from outside L′; ∨Φ′′ contains the remaining
clauses of ∨Φ. Stratum ∨Φ′ is given a higher priority
during model minimization than stratum ∨Φ′′. Impos-
ing this priority implies that certain minimal models
of ∨Φ are no longer considered minimal for stratified
∨Φ (the converse is true, though).

Rather then using a relatively strong assumption of
stratifiability (cf. [Apt88]) of ∨Φ, we content our-
selves with a weaker postulate, requiring that ∨Φ be
a minimally conservative extension of ∨Φ′, that is,
that every minimal model (in the usual, non-stratified
sense) of ∨Φ′ has an expansion to a minimal model
of entire ∨Φ. We call every such an expansion a
hierarchically-minimal model of ∨Φ, and the entail-
ment `Hmin induced by hierarchically minimal seman-
tics a hierarchically-minimal entailment. Any program
which satisfies the above requirement is called a layered
program. One can verify with ease that hierarchically-
minimal models are exactly the models of prioritized
circumscription. It is also easy to check that every
stratified program is layered, but not vice versa.

For each clause q of L′, ∨Φ `min q and ∨Φ `Hmin q
are equivalent, as they are for negated literals q of L.
For other clauses from L\L′ `Hmin behaves differently
than `min. For instance, for positive clauses q of L\L′,
∨Φ `Hmin q and ∨Φ ` q need not be equivalent. In
particular, there are layered programs ∨Φ and positive
clauses q of L \ L′ with ∨Φ `Hmin q but not ∨Φ ` q.
For example, if R is a variable of L′ and S is a variable
of L\L′ then {¬R ⊃ S} `Hmin S. (Recall, that ¬R ⊃
S is an abbreviation for R ∨ S.) We will characterize
∨Φ `Hmin q in terms of Ind(Φ), `min, and q. To that
end, we need the following concept.

Definition 5.1 Let ∨Φ be a program and let q be a
formula of L. The weakest precondition WP (∨Φ, q)
for q relative to Φ in L′ is a set of clauses of L′ which
satisfies two conditions:

i. ∨Φ ∪WP (∨Φ, q) ` q;

ii. for every sentence r of L′, if ∨Φ ∪ {r} ` q then
{r} ` ∧WP (∨Φ, q).

2

Intuitively, the weakest precondition is equivalent to
the weakest formula of the smaller language L′ which
together with ∨Φ implies q, that is, ∧WP (∨Φ, q) is
logically equivalent to ∨{r ∈ L′| ∨ Φ ∪ {r} ` q}. In
particular, if q is a formula of L′ then WP (∨Φ, q) =
{q}. The following Lemma relates `Hmin to `min via
WP .

Lemma 5.2 For every positive layered program Φ
and every positive formula q of L,

∨Φ `Hmin q iff ∨ Φ′ `min ∧WP (∨Φ, q).

Proof. ∨Φ `Hmin q iff [by [SS90], thm. 5.5] q ∈
cwaS(∨Φ ∪ cwaS(∨Φ′)) iff [by [Suc89], thm. 4.3]
∨Φ ∪ cwaS(∨Φ′) `min q iff [by positiveness of q and
thm. 2.7 of [Suc90]] ∨Φ ∪ cwaS(∨Φ′) ` q iff [by def-
inition 5.1 of WP] cwaS(∨Φ′) ` ∧WP (∨Φ, q) iff [by
[Suc89], thm. 4.3] ∨Φ′ `min ∧WP (∨Φ, q). 2

The following lemma extends applicability of Lemma
5.2 over non-positive formulas q.

Lemma 5.3 For every positive program ∨Φ and ev-
ery clause q,

∨Φ `Hmin q iff ∨ Φ `Hmin ∧C(∨Φ ∪ {q}).

Proof. (⇒) is obvious. (⇐) ∨Φ `Hmin ∧C(∨Φ ∪
{q}) implies [by [SS90], thm. 5.5] ∧C(∨Φ ∪ {q}) ∈
cwaS(∨Φ ∪ cwaS(∨Φ′)) implies [by thm. 4.3 of
[Suc89]] ∨Φ ∪ cwaS(∨Φ′) `min ∧C(∨Φ ∪ {q}) im-
plies [by positiveness of ∧C(∨Φ∪ {q}) and thm 2.7 of
[Suc90]] ∨Φ∪ cwaS(∨Φ′) ` ∧C(∨Φ∪ {q}) implies [by
positiveness of ∨Φ and Lemma 4.2] ∨Φ ∪ cwaS(∨Φ′)
proves all positive consequences of Φ ∪ {q} implies
[by [Suc89], thm. 4.3] for every minimal model M
of ∨Φ ∪ cwaS(∨Φ′) there exists a minimal model N
of ∨Φ ∪ {q} with N ⊆ M implies [by [SS90], thm
5.4, every model of cwaS(∨Φ′) is a minimal model
of ∨Φ′, therefore, M |`L′ is a minimal model of
∨Φ′; also, N |`L′ ⊆ M |`L′, and N |`L′ |= ∨Φ′]
N |`L′ = M |`L′ implies N |`L′ is a model of
cwaS(∨Φ′) implies for every minimal model M of
∨Φ ∪ cwaS(∨Φ′) there exists a minimal model N of
∨Φ ∪ {q} ∪ cwaS(∨Φ′) with N ⊆ M implies [by
[Suc89], thm. 4.3] ∨Φ ∪ cwaS(∨Φ′) proves all posi-
tive consequences of ∨Φ ∪ cwaS(∨Φ′) ∪ {q} implies
[by [Suc89], df. 3.1] q ∈ cwaS(∨Φ ∪ cwaS(∨Φ′)) im-
plies [by [SS90], thm. 5.5] ∨Φ `Hmin q. 2

For every program ∨Φ and clause q,

∨Φ `Hmin q iff Ind(∨Φ) `Hmin q. (5)

This property follows from the fact, that if p and r
have the same minimal models then they also have
the same hierarchically-minimal models. Hence the
following theorem.

Theorem 5.4 For every program ∨Φ and clause
q, ∨Φ `Hmin q iff Ind(∨Φ)′ subsumes C(Ind(∨Φ)′ ∪
WP (Ind(∨Φ),∧C(Ind(∨Φ) ∪ {q}))).

Proof. ∨Φ `Hmin q iff [by (5)] Ind(∨Φ) `Hmin q iff
[by Lemma 5.3] Ind(∨Φ) `Hmin ∧C(Ind(∨Φ) ∪ {q})
iff [by Lemma 5.2] Ind(∨Φ)′ `min
WP (Ind(∨Φ)),∧C(Ind(∨Φ) ∪ {q})) iff
[by Theorem 4.3] Ind(∨Φ)′ subsumes C(Ind(∨Φ)′ ∪
WP (Ind(∨Φ),∧C(Ind(∨Φ) ∪ {q}))). 2

Given a procedure for computing WP , Theorem 5.4
yields a straightforward decision algorithm for `Hmin.
Because WP (∨Φ, p ∧ q) = WP (∨Φ, p) ∪WP (∨Φ, q),
the following theorem indicates an equally straightfor-
ward algorithm to compute WP for positive programs
and positive clauses.

Theorem 5.5 Let ∨Φ be a set of positive clauses, let
q be a positive clause in L\L′, and let s1∨p1, ..., sn∨pn
be all the clauses of ∨Φ such that each si is in L \ L′,
each pi is in L′, and each si subsumes q. Then

WP (∨Φ, q ∨ r) ≡ {¬p1 ∨ ... ∨ ¬pn ∨ r}.

(If n=0 then, by convention, ¬p1 ∨ ... ∨ pn ∨ r = r).

Proof. Let us first prove that ` ¬p1 ∨ ... ∨ ¬pn is the
weakest precondition for q. Obviously, ∨Φ ∪ {¬p1 ∨
...∨¬pn} ` q∨ r. Therefore, it suffices to demonstrate
that for every ground clause x in L′, if ∨Φ ∪ {x} `
q then ∨Φ ∪ {x} ` ¬p1 ∨ ... ∨ pn. Suppose to the
contrary, that ∨Φ ∪ {x} 6` ¬p1 ∨ ... ∨ pn, that is, ∨Φ ∪
{x} ∪ {p1, ..., pn} is consistent. Because {p1, ..., pn}
subsumes {s1 ∨ p1, ..., sn ∨ pn}, ∨Φ∪ {x} ∪ {p1, ..., pn}
had the same models as ∨Φ′ = ∨Φ \ {s1 ∨ p1, ..., sn ∨
pn}∪{p1, ..., pn}. In particular, ∨Φ′ is consistent. Let
M be a model of ∨Φ′. Because ∨Φ is positive, M′ =
M∪{A|A is a positive literal of L\L′} is also a model
of ∨Φ′. By the definition of {s1 ∨ p1, ..., sn ∨ pn}, all
occurrences of q in ∨Φ′ are in positive clauses involving
literals of L \ L′ not in q, and all these literals are
satisfied by M′. Therefore, M′′ = M′ \ {B|B is a
literal of q} is a model of ∨Φ′. M′′ |= ¬q. Hence
∨Φ′ ∪ {¬q} is consistent, and therefore, ∨Φ ∪ {x} ∪
{p1, ..., pn}∪{¬q} is consistent. From this, we conclude
that ∨Φ ∪ {x} ∪ {¬q} is consistent - a contradiction.
Thus ∨Φ∪{x} ` {¬p1∨...∨¬pn}, and {¬p1∨...∨¬pn}
is the weakest precondition for q.

Now, let ∨Φ ∪ {x} ` q ∨ r. We get ∨Φ ∪ {x ∧ ¬r} ` q,
that is, ∨Φ∪{x∧¬r} ` ¬p1 ∨ ...∨¬pn, so ∨Φ∪{x} `

¬p1 ∨ ... ∨ ¬pn ∨ r, that is, ¬p1 ∨ ... ∨ ¬pn ∨ r is the
weakest precondition for q ∨ r. 2

It follows from Theorem 5.5 that if |C(Ind(∨Φ)∪{q})|
is polynomial in |Φ| then
|WP (Ind(∨Φ), C(Ind(∨Φ)∪{q}))| is polynomial in |Φ|
either. If, moreover, the number of occurrences of
negation in WP (Ind(∨Φ), C(Ind(∨Φ) ∪ {q})) is O(1)
in |Φ| then the question ∨Φ `Hmin q may be solved
in polynomial time (proofs are straightforward). More
general evaluation of its complexity requires further
study.

Example 5.6 Let
L′ = {A,B}, L = {A,B,C,D},∨Φ = {A ∨ B,A ∨
C ∨ D,B ∨ C ∨ D}, and q = C ∨ D. We have:
Ind(∨Φ) = ∨Φ; ∨Φ′ = {A∨B}; Φ is a minimal conser-
vative extension of ∨Φ′; C(Ind(∨Φ)∪{q}) = {C ∨D};
WP (∨Φ, C∨D) = {¬A∨¬B}; C(∨Φ′∪{¬A∨¬B}) =
B ∨ A; Φ′ subsumes C(∨Φ′ ∪ {¬A ∨ ¬B}). Hence,
Φ `Hmin q. 2

Complexity of modeling of definite stratified programs
was analyzed in [AB91].

6 Speed-ups

The pigeonhole principle PHP, as it was demonstrated
in [CR79], leaves no hope for a complete and fast
resolution-based derivation algorithm. Consequently,
the resolution-based algorithms we presented so far
must perform at least exponentially badly in the worst
case. In this section we briefly discuss to what extent
the indefinite modeling may be faster than the mini-
mal modeling and vice versa.

First, let us notice that for every anti-chain Φ in the
set of sets of variables of L, ∨Φ is its own indefinite
model, and ∧Φ is the set of minimal models of ∨ ∧ Φ.
Therefore, if there are programs for which the indefi-
nite model is smaller than the set of minimal models,
there must be equally many others for which the con-
verse is true. This fact suggests that a parallel appli-
cation of both methods while deciding ∨Φ `min q may
result in a considerable speed-up in some cases, while
the slow-down factor, if any, will not exceed 2. For in-
stance, as we noted in Section 3, |Modmin(∨PHP−)|
is exponential in | ∨ PHP−|, while |Ind(∨PHP−)| =
| ∨ PHP−|. Also the converse is true: there are pro-
grams ∨Φ with |Modmin(∨Φ)| polynomial in |∨Φ| but
|Ind(∨Φ)| exponential in |∨Φ|. (Even if both are poly-
nomial, any resolution-based conversion of one onto
another may require exponential number of steps).
This parallel strategy, however, cannot improve the
worst-case performance of these methods, since there
are programs ∨Φ for which both |Modmin(∨Φ)| and

|Ind(∨Φ)| are exponential in the size of |Φ|. For in-
stance, take a union of a hard example for minimal
modeling (PHP) with a hard example for indefinite
modeling (any one from Section 4 will do). More-
over, the carrier of Modmin(∨Φ) coincides with the
carrier of Ind(∨Φ) in worst cases, which means that
the improvement achieved by parallelization of the two
method is limited to some non-worst cases.

Example 6.1 Let N = 2n − 1 and let Φ = {ϕ | ϕ is
a set of n distinct literals of L}. Φ is an anti-chain.
Obviously, Ind(∨Φ) = ∨Φ. Also, Modmin(∨Φ) = ∧Φ.

The size of Φ is maximal:
(

N
dN2 e

)
elements with

dN2 e literals each, which totals in dN2 e ×
(

N
dN2 e

)
≈

2N
√

2N
occurrences of literals. 2

We conclude this section with rough estimation of the
average ratio RD,Cavg of the sizes of the indefinite model
and of the set of minimal models of a program with N
variables. For that purpose, we will use the Shannon’s
counting argument. Let M be a set of m elements, N
be the set of n shortest sequences of elements of M,
and k be the length of the longest element of N . For
every i < k, N contains mi sequences of length i and
at most mk sequences of length k. Therefore,

k−1∑
i=0

mi < n ≤
k∑
i=0

mi.

The total length l of all sequences of N is

k−1∑
i=1

i×mi + k ≤ l ≤
k∑
i=1

i×mi.

Elementary calculations show that the average length
l
n of an element of N satisfies

logm
n

4
<

l

n
< logmn

From this we conclude that the average length of a
sequence in any finite set of n (not necessarily shortest)
sequences of elements of M is greater than log2n−2

log2m
.

Let κ be the number of indefinite models inN variables
(which, as we noted above, is the same as the number

of sets of minimal models) and let γ =
(

N
dN2 e

)
be

the cardinality of the longest antichain with N ele-
ments. Because a subset of an anti-chain is an anti-
chain, κ ≥ 2γ . Using the Shannon’s counting argu-
ment we conclude that the average size of a set of min-
imal models (each of them being a sequence of up to N

literals and curly braces { and }) is at least log2κ−2
log2(N+2)

≥ γ−2
log2(N+2) . Hence

RD,Cavg =
1
κ
×

κ∑
i=1

di
ci
≥ 1
κ
×
∑κ
i=1 di

dN2 e × γ
=

=
1

dN2 e × γ
×
∑κ
i=1 di
κ

≥ γ − 2
N × log2(N + 2)× γ

≈

≈ 1
N × log2N

,

where ci’s and di’s are the sizes of all indefinite mod-
els and sets of their minimal models. Symmetric argu-
ment shows that the average RC,Davg of the converse ratio
has the same lower bound. Therefore, on average, the
cost of minimal modeling and indefinite modeling are
very close to each other. Their closer relationship, for
instance, the average ratio di

ci
with averaging restricted

to cases when the smaller of ci, di is polynomial in N ,
requires further study.

7 Credit to Others

A version of the right-hand side of criterion (1) for
indefinite deductive data bases was proposed (in an
equivalent form) by Minker [Min82] under the name of
Generalized Closed-World Assumption. Liu and Sun-
derraman [LS87] introduced indefinite tuples in a re-
lational model of a data base. The credit for stratifi-
cation is due to Apt, Walker and Blair [ABW88], and
Van Gelder [Gel88]. The idea of deciding p `min q by
direct verification is Minker’s and his collaborators.

8 Acknowledgements

I would like to thank Henrietta Okeke and Johnny
Chan for LATEXing my hieroglyphic manuscript, and
Selase Williams for his support of my research activi-
ties.

References

[AB91] Krzysztof R. Apt and Howard A. Blair.
Arithmetic classification of perfect models
of stratified programs. Fundamenta Infor-
maticae, 14:339–344, 1991.

[ABW88] Krzysztof R. Apt, Howard A. Blair, and
Adrian Walker. Towards a theory of declar-
ative knowledge. In [Min88], pages 89–142.
1988.

[Apt88] Krzysztof R. Apt. Introduction to logic pro-
gramming. Report TR-87-35, University of
Texas, Department of Computer Sciences,
Austin, Texas 78712, 1988.

[BT88] Samuel R. Buss and Győrgy Turán. Resolu-
tion proofs of generalized pigeonhole princi-
ples. Theoretical Computer Science, 62:311–
317, 1988.

[CR79] Stephen A. Cook and Robert A. Reckhow.
The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic,
44(1):36–50, 1979.

[Gel88] A. Van Gelder. Negation as failure using
tight derivations for general logic programs.
In [Min88], pages 19–88. 1988.

[Hak85] Armin Haken. The intractability of resolu-
tion. Theoretical Computer Science, 39:297–
308, 1985.

[Lif85a] Vladimir Lifschitz. Closed-world databases
and circumscription. Artificial Intelligence,
27:229–235, 1985.

[Lif85b] Vladimir Lifschitz. Computing circumscrip-
tion. In Proceedings of Eight International
Joint Conference on Artificial Intelligence,
pages 121–127, Los Angeles, 1985.

[LS87] K.C. Liu and R. Sunderraman. An ex-
tension to the relational model for indefi-
nite databases. In Proceedings of the ACM-
IEEE Computer Society Fall Joint Com-
puter Conference, Dallas, TX, pages 428–
435. ACM-IEEE, October 1987.

[Min82] Jack Minker. On indefinite databases and
closed world assumption. In Proceedings
of 6-th Conference on Automated Deduc-
tion, Lecture Notes in Computer Science
138, pages 292–308, Berlin, New York, 1982.
Springer Verlag.

[Min88] Jack Minker, editor. Foundations of De-
ductive Databases and Logic Programming.
Morgan Kaufmann, Los Altos, 1988.

[SS90] Marek A. Suchenek and Rajshekhar Sunder-
raman. Minimal models for closed world
data bases with views. In Zbigniew W.
Ras, editor, Methodologies for Intelligent
Systems, 5, pages 182–193, New York, 1990.
North-Holland.

[Suc89] Marek A. Suchenek. A syntactic character-
ization of minimal entailment. In Ewing L.
Lusk and Ross A. Overbeek, editors, Logic
Programming, North American Conference
1989, pages 81–91, Cambridge, MA, Octo-
ber 16–20 1989. MIT Press.

[Suc90] Marek A. Suchenek. Applications of Lyndon
homomorphism theorems to the theory of
minimal models. International Journal of
Foundations of Computer Science, 1(1):49–
59, 1990.

[Suc93] Marek A. Suchenek. First-order syntactic
characterizations of minimal entailment, do-
main minimal entailment, and Herbrand en-
tailment. Journal of Automated Reasoning,
10:237–263, 1993.

[Suc94] Marek A. Suchenek. Preservation properties
in deductive databases. Methods of Logic in
Computer Science An International Jour-
nal, 1:315–338, 1994. An invited paper.

[Suc97] Marek A. Suchenek. Evaluation of queries
under the closed-world assumption. Journal
of Automated Reasoning, 18:357–398, 1997.

[YH85] A. Yahya and L. Henschen. Deduction in
non-Horn databases. Journal of Automated
Reasoning, 1:141–160, 1985.

