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Abstract

This paper provides an overview of deductive data bases, with an
emphasis on problems related to negative information. It embeds this
subject into a wider context of logic programming, exposing certain
peculiarities pertinent to treatment of negation in these fields.
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1 Introduction

In this paper, we discuss some problems related to representing and han-
dling negative information in deductive databases, a species which has been
recognized by many as a cutting edge of research in database theory and ap-
plications. The subject, albeit over 10 years old, has not lost anything from
its appeal and momentum. To the contrary, it appears to gain continuously
even more attention from database community, attracting by its intellectu-
ally challenging nature the most talented and successful scholars. It may
be embedded in the context of another, nowadays fashionable, phenomenon
known under the name of non-monotonic logic.

The deductive model of a database emerged from its predecessor relational
model, by incorporating certain elements and methods of automated theo-
rem proving. A relational database is an information storage and retrieval
system in which entries are organized in a finite collection of relations with
the standard operations on these relations as: insertion, deletion, selection,
projection, product, join, union, intersection, and difference. Every relation
is represented by a finite set of tuples, whose elements are in this relation and
are usually called facts. Database users may access the information stored in
the database by means of queries expressed in a suitable language. Database
management system plays the role of an interface between its user and the
physical database, and is responsible for accepting user’s queries and opera-
tions as well as returning answers to the user. Moreover, it secures that the
integrity constraints pertinent to the database are not violated. This last
task involves certain elements of reasoning, because the integrity constraints
are usually expressed in the form of rules. Relational database, or rather
its management system, does not go much beyond passive verification of the
legality of the performed operations against the coded integrity constraints.
Another feature of relational databases that requires some form of reasoning
is the concept view. Views, may be interpreted as definitions of relations
not explicitly represented in a physical database. They are usually limited
to certain non-recursive rules and are intended to information hiding rather
than to equip a database with deductive abilities.

A seemingly natural observation that an active use of rules present in a
database may result in the derivation of new facts, not explicitly represented
it, leads to the concept of deductive database. One may say that this was
a passiveness of relational database in handling integrity constraints which
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gave rise to deductive databases. It has taken, however, a decade between
[GR68] and [Rei78b] to materialize this concept in a form of more or less
explicit definition. Concurrent and mostly independent development in logic
programming contributed significantly to the faster maturing of deductive
databases.

Although deductive database in its current comprehension does not im-
ply or restrict its possible implementations, conceptually it may be viewed
as a relational database equipped with additional, “intelligent” layers, capa-
ble of complex reasoning from the content of the relational component. In
fact, this point of view seems to prevail. One should note, however, that
since contemporary relational databases are not purely passive in executing
their integrity constraints, the distinction between relational and deductive
databases is rather fuzzy, and one certainly can find a variety of cases which
may be classified “relational” as well as “deductive”.

The deductive model turned out to be more powerful (at least as far as the
expressive power is concerned) than the relational one, and as a matter of fact,
relational databases may, to a large extent, be understood as a very special
case of deductive ones. However, its different form of representation caused
that the natural one-to-one correspondence between relational databases and
the respective subclass of deductive ones is not an identity, although very
strongly resembles it. Therefore, to make a relational database deductive,
a suitable translation process is necessary. It turns out that this process is
largely responsible for the demand of non-standard treatment of negation in
processing queries to deductive databases.

If one translates the content of a purely relational database into its deduc-
tive counterpart, the problem with the interpretation of negative information
manifests its presence. Certainly, while translating tuples onto predicates or
more precisely, onto ground literals, only positive information of the rela-
tional part is explicitly processed, despite the fact, that the relational part
may encode negative information too. The first systematic treatment of this
phenomenon by means of closed world assumption may be found in [Rei78b],
and since then, a mature age of deductive databases seems to begin.

The closed world assumption may be recognized as a benchmark, which
makes a difference between relational and deductive databases, since in the
relational model the closed world assumption is somehow hardwired, and is
therefore superfluous. Deductive databases, contrary to relational ones, do
need the closed world assumption to allow negative conclusions from purely
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positive information: all simple positive facts that cannot be derived from the
database are assumed to be false under cwa, or in other words, their negations
are asserted. This simple and seemingly unquestionable rule creates certain
problems, however, if mechanically applied to deductive databases which are
not a result of translating the content of a relational database. This is why
a proper treatment of negation is so crucial in this context.

In the present comprehension of the term, deductive databases consist of
the following syntactic elements:

• extensional part, which corresponds to the relations, usually in the form
of a set of so called ground literals,

• intensional part, which corresponds to view definitions, integrity con-
straints, and other dependencies, usually in the form of a set of so called
clauses,

• resolution theorem prover, which derives logical consequences of the
extensional and intensional content of the database

• meta-rules for negative inferences, e.g. the closed world assumption.

This paper focuses on the last element, discussing how it affects the entire
database and its information content, and what semantic meaning may be
consistently associated with rules of this kind. Because the area of deductive
databases is not the only one concerned with proper treatment of negation, we
also will briefly discuss how this problem is approached in logic programming.

2 Preliminaries

Deductive databases have a form of collection of clauses expressible in a
language of first-order logic. In this section, we provide a concise introduction
to first-order clause logic, and outline the resolution refutation procedure for
automated deduction.

2.1 Syntax of First-Order Logic

Logic is a branch of mathematics which investigates infallible rules of rea-
soning. Propositional logic is perhaps the simplest form of logic which deals
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with propositional statements, as “It is sunny today” or “It is not raining
today”, and reasoning within this context. Propositional symbols are used
to represent statements and may incorporate logical connectives ∧ (and),
∨ (or), → (implies), and ¬ (not), to combine simple statements into more
complex ones. E.g. if P denotes “It is sunny today”, and Q denotes “It is
not raining today”, then P → Q denotes “If it is sunny today then it is not
raining today”.

One can always conclude Q from the premises:

P and P → Q

based on the inference rule of propositional logic, called modus ponens. This
rule, together with the propositional axioms (see Appendix) serves as a build-
ing block of proofs, i.e. finite sequences of propositions, each of them being
either an axiom or a premise, or following from two preceding ones as a result
of application of this rule. The last proposition in such a sequence is the one
which is being proved. For example, if Q is a premise (in general, one can
have as many premises as one wishes) which is for some reason known or
asserted true, then the following sequence

1. Q (premise)

2. Q → (P → Q) (axiom)

3. P → Q (result of rule modus ponens applied to 1. and 2.)

is a proof of P→ Q. In a case like this, we say that “Q” proves “P→ Q”, or
equivalently, that “P→ Q” is provable from “Q” (see Appendix for example
of a proof of ¬ Q → ¬ P from premise P → Q ).

Despite its elegant simplicity, propositional logic is not particularly suit-
able to proper treatment of statements of the form: “All men are mortal”,
“Socrates is a man”, nor to reasoning within this context. E.g. it is not pos-
sible to conclude that “Socrates is mortal” from these statements using only
propositional axioms and modus ponens. It is the first-order logic, which
is a more powerful form of logic capable of formally expressing such state-
ments and reasoning with them. In addition to logical connectives, first-order
logic allows quantifiers ∀ (for all) and ∃ (there exists) ranging over individual
variables appearing in statements. For example,
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1. (∀x)(Man(x) → Mortal(x)) may denote the statement “All men are
mortal”;

2. Man(Socrates) may denote the statement “Socrates is a man”.

Within first-order logic one can conclude Mortal(Socrates), which denotes
“Socrates is mortal”, from the above sentences 1 and 2.

Since first-order logic provides a language for deductive databases, we will
take a closer look at its syntax and semantics. The alphabet for first-order
language consists of predicate symbols, constant symbols, variable symbols,
function symbols, quantifiers, logical connectives, and other usual punctua-
tion symbols. There are two essentially different kinds of expressions one can
build out of the symbols of this alphabet: terms and formulas. Terms provide
a repertoire of names for objects of the universe of discourse, like “Socrates”,
“x”, “7”, “f(x,g(7))”, etc. More formally, a term is a constant symbol, or a
variable symbol, or a function symbol followed by a list of arguments which
are terms themselves. In the above examples “Socrates” and “7” are con-
stants, “x” is a variable, and “f(x,g(7))” is a complex term, where f and g
are functions. Formulas are used to express attributes and relationships per-
tinent to these objects. The statement attributing human race to Socrates,
“Socrates is a man”, is represented as Man(Socrates) using a unary predicate
Man and the constant Socrates in. The statement relating Tom and Mary,
“Tom likes Mary”, is represented as Likes(Tom,Mary) using a binary predi-
cate Likes and the constants Tom and Mary. One can also use functions to
represent statements. For example, the statement “Tom respects Mary’s fa-
ther” may be represented as Respects(Tom,father(Mary)). A mathematical
statement which states that x is less than f(x,g(7)) can be written as “< x
(f(x,g(7)))”, or in more familiar infix form, as “x < f(x,g(7))”.

Simple statements of the above form are called atomic formulas. More
formally, an atomic formula is of the form P (t1, . . . , tk), where P is a predicate
symbol and t1, . . . , tk are terms. Quantifiers and logical connectives allow,
in an obvious way, to compose simpler formulas into more complex ones.
Atomic formulas and negated atomic formulas are referred to as literals,
positive literals refer to atomic formulas, negative literals refer to negated
atomic formulas.

Formulas expressible in first-order language may be fairly complicated,
for example
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(∀x)(∃y)(∀z)(z ∈ y ≡ (∃v)(v ∈ x ∧ z ∈ v)).

It should not be a surprise that handling complex formulas like this in a
deductive database may be very costly and time consuming. Fortunately, al-
though literals do not have enough expressive power, such complex creatures
like the one above are hardly encountered in database applications. It has
been widely accepted, that the class of clauses, which is a proper subclass of
all first-order formulas, is satisfactorily sufficient for this purpose.

The notion of clause is a key syntactic concept in deductive databases
and logic programming. Clauses allow to express statements more complex
than literals, while maintaining relative simplicity so desirable by prospective
users of deductive databases. Using them, one can represent dependencies
and constraints of various kinds.

Let us take a look at two examples of statements one may wish to rep-
resent in a deductive database: “if X is the parent of Y then X is either the
father of Y or the mother of Y”, and “if X is a component of Y and Y is a
component of Z then X is a sub-component of ”. The first statement can be
articulated, using the predicates father, Mother and parent as

parent(X, Y )→ father(X, Y ) ∨Mother(X, Y )

while the second one by using the predicates Component and Sub-component
as

Component(X, Y ) ∧ Component(Y, Z)→ Sub− component(X,Z).

In the context of deductive databases the above formulas are written in a
reversed direction, i.e. as

father(X, Y ) ∨Mother(X, Y )← parent(X, Y )
Sub− component(X,Z)← Component(X, Y ) ∧ Component(Y, Z)

With a help of logical rules, one can transform these formulas into the dis-
junctive normal form (disjunction of literals):

father(X, Y ) ∨Mother(X, Y ) ∨ ¬parent(X, Y ),
Sub− component(X,Z) ∨ ¬Component(X, Y ) ∨ ¬Component(Y, Z).
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The first formula can be interpreted as “either X is the mother of Y or is the
father of Y or is not a parent of Y” and the second formula can be interpreted
as “either X is a sub-component of Z or X is not a component of Y or Y is not
a component of ”. The formulas in the disjunctive normal form are referred
to as clauses.

Formally, a clause is a formula of the form

(∀X1) . . . (∀Xn)(P1 ∨ . . . ∨ Pm ∨ ¬Q1 ∨ . . . ∨ ¬Qk)

where the Xis are the variable symbols occurring among the positive literals
P s and Qs. The same clause may be written in its equivalent form,

(∀X1) . . . (∀Xn)(P1 ∨ . . . ∨ Pm ← Q1 ∧ . . . ∧Qk)

For simplicity, they are stripped of the quantifiers when appearing in the
context of a deductive database (or a logic program), so the first one takes
the form

P1 ∨ . . . ∨ Pm ∨ ¬Q1 ∨ . . . ∨ ¬Qk

and the second one takes the form

P1 ∨ . . . ∨ Pm ← Q1 ∧ . . . ∧Qk

A clause is said to be a definite clause if m = 1 and an indefinite clause if
m > 1. The left hand side of the clause is referred to as the head and the
right hand side as the body of the clause. If the body of a clause is empty,
the← symbol is dropped for notational convenience. A Horn clause is either
a definite clause or a formula of the form

¬(Q1 ∧ . . . ∧Qn)

which is customarily written as

← Q1, . . . , Qn

where each Qi is a positive literal. Queries in deductive databases are repre-
sented using Horn clauses of this form.

A ground clause is a clause in which there are no occurrences of variables.
A positive clause is one in which all the literals are positive. The table in
Figure 1 summarizes the various kinds of clauses. An empty clause consists of
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Clause Type Example

Definite Clause Sub− component(X,Z)← component(X, Y ) ∧ component(Y, Z)
Indefinite Clause father(X, Y ) ∨Mother(X, Y )← parent(X, Y )
Positive Clause supplies(X,P1) ∨ supplies(X,P2)
Ground Clause father(Gary, Tom)← Son(Tom,Gary)
Empty Clause 2

Figure 1: Different Kinds of Clauses

no literals and is denoted by 2. The empty clause represents a contradiction.

Although clauses constitute a small subclass of all first-order formulas,
their expressive power is surprisingly strong. For example, every sentence of
the form

∀X1 · · · ∀Xnφ(X1, . . . , Xn)

where φ(X1, . . . , Xn) is an arbitrarily complex quantifier free formula with
variables X1, . . . , Xn is logically equivalent to a finite set of clauses. Also, ex-
istential statements may be approximated using auxiliary constants or func-
tion symbols. These facts explain, to some extent why the language of clauses
has been widely accepted for deductive databases, logic programming, and
other domains of artificial intelligence.

2.2 Semantics of First-Order Logic

Semantics of first-order language provides an interpretation of the symbols
used to construct sentences, so that these sentences become meaningful. It
is rather exceptional that a clause itself implies its own meaning ( P ← P is
such an exception, a tautologically true clause ), because the logical value of
the clause may depend on how one interprets the symbols which occur within
it. An interpretation assigns meanings to variables, constants, functions, and
predicate symbols. Formally, an interpretation for a set of clauses in a first-
order language consists of a non-empty set D, called the domain ( or world
of discourse ), an assignment of each constant symbol to an element in the
domain, an assignment of each function symbol to a function on the domain,
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and an assignment of each predicate symbol to a relation on the domain.
The role of the domain is to specify the set of individual objects which may
have been named by terms of the language, or in other words, to specify the
set of all possible values these terms may assume. In case the language does
not contain the equality symbol =, interpretation constitutes and idealized,
not necessarily finite, relational database.

Example 2.1 Consider a first-order language with the relation symbol wife,
and constant symbols Marek, Michele, Raj, Radhika, and Gopi. We can in-
terpret the relation symbol wife in the usual way, i.e., wife(a,b) means “a is
the wife of b”. Consider the domain, D = { Marek Suchenek, Michele Vin-
cent, Rajshekhar Sunderraman, Radhika Venkataraman, Rajaraman Sun-
derraman }, which consists of five individuals. If we associate the constants
Marek, Michele, Raj, Radhika, and Gopi with the individuals Marek Such-
enek, Michele Vincent, Rajshekhar Sunderraman, Radhika Venkataraman,
and Rajaraman Sunderraman respectively and associate the predicate symbol
wife with the relation { < Michele Vincent, Marek Suchenek >, < Radhika
Venkataraman, Rajshekhar Sunderraman > } then the following sentences
are true with respect to this interpretation.

1. wife(Michele,Marek)

2. (∃X)wife(Radhika,X)

However the sentence (∃X)wife(X,Gopi) is false under this interpretation.
* 2

An interpretation I for a set of sentences S is said to be a model for S
if each sentence in S is true in I. In general, a set of sentences may have
many essentially different models, for example, sizes of their relations may
differ. If one treats interpretations as abstract relational databases, differ-
ent sizes of relations correspond to different information content ( the more
tuples the greater the information content ). It turns out that interpre-
tations with possibly minimal information content, the so called minimal
models, are the ones which are mostly useful in context of database ap-
plications. More precisely, I is called a minimal model if any deletion of
tuples from relations of I infallibly results in an interpretation J which is
not a model of S. A minimal model is the one which has possibly minimal
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relations while satisfying all the sentences of S. E.g. the set of sentences
S = {Male(X) ∨ Female(X),Male(Marek), Female(Michele), Cat(Fay)}
has two minimal models: one with interprets the predicate symbol Male as
a unary relation {< Marek >} and the predicate symbol Female as a unary
relation {< Michele >,< Fay >}, and another which interprets predicate
symbol Male as a unary relation {< Marek >,< Fay >}, and symbol Fe-
male as a unary relation {< Michele >}. Models having larger relations,
as e.g. one which interprets symbol Male as {< Marek >,< Fay >}, and
symbol Female as {< Marek >,< Fay >}, are not minimal. Interpretation
of symbols Male and Female as {< Marek >} and {< Michele >}, respec-
tively, is not a model of S (does not satisfy the clause Male(X) ∨ Female(X)
which forces every X to be Male or Female).

Semantics restricted to minimal models, the so called minimal model se-
mantics, is one of the central issues in deductive databases. It provides an
adequate meaning for negative clauses. Its applications, however, go much
beyond deductive databases: its variants have been widely accepted as the
semantics in logic programming and in certain non-monotonic logic as well (
under the name of predicate circumscription in the latter ).

It is somewhat surprising, nevertheless known from the early thirties,
that models for consistent sets of clauses may be built out of terms of the
language in which these clauses are expressed. This fact, discovered by the
German mathematician Herbrand, remained as some kind of curiosity till
the seventies, when its application in the area of logics of programs and
logic programming. This kind of models are particularly useful in deductive
databases, because they allows to restrict semantical considerations of such
databases to purely syntactic objects.

These useful objects are called Herbrand interpretations. Their domains
consist of names of individual objects which may be expressed in the language
in question. More precisely, the Herbrand universe (domain) of a set of
clauses is the of all ground terms that can be formed out of the constant
and function symbols that appear in the clauses. For example the Herbrand
universe of the clauses Likes (Tom, Mary) and Likes (X, father (Y))← Likes
(X, Y) is:

{Tom, Mary, father(Tom), father(Mary), father(father(Tom)),
father(father(Mary)), . . . }
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The Herbrand base of a set of clauses is the set of all possible ground
atomic formulas that can be constructed from the predicate symbols and
ground terms from the Herbrand universe. For example the Herbrand base
for the set of clauses { Likes(Tom,Mary), Married(Tom,Mary) } is:

{ Likes(Tom,Tom), Likes(Tom,Mary), Likes(Mary,Mary), Likes(Mary,Tom),
Married(Tom,Tom), Married(Tom,Mary), Married(Mary,Mary),

Married(Mary,Tom) }

A Herbrand interpretation for a set of sentences is an interpretation whose
domain is the Herbrand universe and in which constants and functions are as-
signed to “themselves”. Since, for Herbrand interpretations, the assignments
of constants and functions is fixed, a Herbrand interpretation is identified by
a subset of those elements of the Herbrand base, which are true under this
particular interpretation.

A Herbrand model for a set of sentences is a Herbrand interpretation in
which all the sentences are true.

As an example, consider the set of clauses

Path(a,b)
Path(b,c)
Path(X,Y) ← Path(X,Z), Path(Z,Y)

The Herbrand base for this example is

{ Path(a,a), Path(a,b), Path(a,c), Path(b,a), Path(b,b), Path(b,c),
Path(c,a), Path(c,b), Path(c,c) }

The Herbrand interpretation { Path(a,a), Path(b,b) } is not a model for the
set of clauses, whereas the Herbrand interpretation { Path(a,b), Path(b,c),
Path(a,c) } is a (minimal) model for this set of clauses.

2.3 Resolution Refutation Procedure

Given a set of definite clauses P and query clause F, one can try to mechan-
ically determine if P logically implies F. Perhaps the most standard solution
to this problem is provided by the so called resolution refutation. The res-
olution refutation procedure concludes that F is logically implied by P if it
derives a contradiction represented by the empty formula and denoted by 2.
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Its variants are widely used in contemporary theorem proves, logic pro-
grams, and - as one can guess - in deductive databases. The basic step in
the resolution refutation procedure is to select a negative literal from query
F and unify it with the positive literal of a clause from set P. The unification
process is a generalization of the parameter binding process during execution
of procedure calls in programming languages like Pascal. The selected literal
is then replaced by the body of the program clause and then the substitution
involved in the unification process is applied to F. For example consider the
clause

P (X, Y )← Q(X,Z), R(Z, Y )

and the query

← P (a,W ), Q(U, V )

The literal P (a,W ) in the query unifies with the positive literal of the clause
P (X, Y ) with the substitution a for X and W for Y . On resolving we get
the following modified query

← Q(a, Z), R(Z,W ), Q(U, V )

This process is continued till the empty formula is derived, in which case the
negation of the query clause is a consequence of the program. We shall see
examples of this process in a later section.

3 Deductive Databases

Deductive databases may be seen as generalizations of relational databases
where, in addition to facts, general rules are allowed to be a part of the
database. Let us consider the familiar suppliers and parts database in which
the relation S represents information about suppliers, P represents informa-
tion about parts, and SP represents information about which supplier sup-
plies which part, and in what quantity. A possible instance of this database
is

S
S1 NYC
S2 NYC
S3 DC

P
P1 Nut
P2 Bolt
P3 Rivet

SP
S1 P1 100
S1 P2 400
S2 P1 400
S3 P3 250
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This relational database can be made into a deductive database by introduc-
ing the following rules:

NYC S(X) ← S(X,’NYC’)
P1 S(X) ← SP(X,’P1’,Y)

One can query the deductive database based on the relations S, P, SP (base
relations) and NYC S, P1 S (virtual relations). As the above example sug-
gests, deductive database strictly subsume relational databases and hence
are more expressive.

Formally, a deductive database is a system of the form

< Σ,< >

where Σ is a finite set of clauses and < is a finite set of meta-rules for neg-
ative (or, in more general case, non-positive) inferences. Σ, as it has been
mentioned in Section 1, is comprised of ground literals (extensional part of
a database) and other clauses (intensional part). If Σ contains exclusively
definite clauses then < Σ,< > is called definite. Otherwise, it is called indef-
inite. < describes how negative conclusions may be derived from Σ. Having
in < suitable rules for negative inferences, one does not have to represent
explicitly the negative information in Σ (although integrity constraints may
take a form of purely negative clauses; cf. [Jac88]). In such a case, Σ may
be restricted to non-negative clauses.

3.1 Queries and Answers

Let us discuss briefly the notion of a query and its answer. Consider the
following database:

supplier(S1,NYC)
supplier(S2,NYC)
supplier(S3,DC)
supplies(S1,P1)
supplies(S1,P2)
supplies(S2,P2)
supplies(S3,P1)

The query, find the supplier number and cities for suppliers who supply part
P1, can be written as
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{< X, Y > |supplier(X, Y ) ∧ supplies(X,′ P1′)}

which can be interpreted as: find all pairs of values X and Y such that
supplier(X, Y ) and supplies(X,P1) can be derived from the database. As
another example, the query: find the parts that are supplied by suppliers
located in NY C, can be written as

{< X > |(∃Y )(supplier(Y,′ NY C ′) ∧ supplies(Y,X))}

which can be interpreted as: find values for variable X such that there exists
a supplier Y who is located in NY C and supplies part X. The answer to
the first query can be easily verified to be < S1, NY C > and < S3, DC >
and the answer to the second query can be easily verified to be < P1 > and
< P2 >. In obtaining the answer to these queries, we have made an implicit
assumption that if a fact is not present in the database, we assume it to be
false. We will make this concept more clear in later sections.

Let us formalize the above notions of queries and their answers. Consider
a deductive database < Σ,< >, where Σ is a collection of clauses and < is a
finite set of meta-rules for negative inferences. A query is a specification of
the form

Q = {< X1, . . . , Xn > |(∃Y1) · · · (∃Ym)W (X1, . . . , Xn, Y1, . . . , Ym)}

and can be interpreted as:

Find values for the variables Xis such that there exists values for
Yis which satisfy the formula W .

This query is equivalent to the following definite clause:

ANSWER(X1, . . . , Xn)← W (X1, . . . , Xn, Y1, . . . , Ym).

Let us denote the set of all negative facts asserted by the meta-rules of <
by NEG(Σ). Let ci denote an n-tuple of constant symbols and Y denote
Y1, . . . , Ym. Then {c1, . . . , cn} is an answer to the query Q with respect to
the database < Σ,< > if

Σ ∪NEG(Σ) ` ((∃Y )W (c1, Y ) ∨ · · · ∨ (∃Y )W (cn, Y )).

An answer A to a query Q is said to be minimal if no proper subset of A is
an answer to Q. We use the notation c1 + · · ·+ cn instead of the set notation
where + indicates disjunction. An answer c1 + · · ·+ cn is said to be definite
if n = 1, otherwise it is indefinite.
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3.2 Definite Deductive Databases

As it has been indicated earlier, a definite deductive database consists of
definite clauses. To be more precise, in a definite deductive database all
answers to queries are definite, which makes the process of their calculation
simple. In this section, we describe two approaches to evaluating queries
in a definite deductive database: a top-down approach using the resolution
refutation procedure, and a bottom-up approach using the relational algebra.

Let us consider the Bill of Materials example. We can represent the sub-
component relationship using the following two definite clauses:

sub− component(X, Y )← component(X, Y )
sub− component(X, Y )← component(X,Z), sub− component(Z, Y )

where component(X,Y) means “Y is a component of X” and sub-component(X,Y)
means “Y is a sub-component of X”. Let us assume the following facts to be
true for the component relationship:

component(P1, P2)
component(P1, P3)
component(P1, P4)
component(P2, P5)
component(P2, P6)
component(P4, P7)
component(P4, P8)
component(P7, P9)
component(P7, P10)

Now, let us consider the query: Find all the subcomponents of part P4, which
can be represented as the definite clause

Answer(X)← sub− component(P4, X)

or the query clause

← sub− component(P4, X)

Top-down Approach: Using the resolution refutation procedure on the
query clause we obtain the following derivations:
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1. Query clause: ← sub− component(P4, X)
Program clause: sub− component(X1, Y1)← component(X1, Y1)
Unification substitution: P4 for X1 and X for Y1

Modified query clause: ← component(P4, X)
Program clause: component(P4, P7)←
Unification substitution: P7 for X
Modified query clause: 2

Answer to query: X = P7

2. Query clause: ← sub− component(P4, X)
Program clause: sub− component(X1, Y1)← component(X1, Y1)
Unification substitution: P4 for X1 and X for Y1

Modified query clause: ← component(P4, X)
Program clause: component(P4, P8)←
Unification substitution: P8 for X
Modified query clause: 2

Answer to query: X = P8

3. Query clause: ← sub− component(P4, X)
Program clause: sub−component(X1, Y1)← component(X1, Z1), sub−
component(Z1, Y1)
Unification substitution: P4 for X1 and X for Y1

Modified query clause: ← component(P4, Z1), sub− component(Z1, X)
Program clause: component(P4, P7)←
Unification substitution: P7 for Z1

Modified query clause: ← sub− component(P7, X)
Program clause: sub− component(X1, Y1)← component(X1, Y1)
Unification substitution: P7 for X1 and X for Y1

Modified query clause: ← component(P7, X)
Program clause: component(P7, P9)←
Unification substitution: P9 for X
Modified query clause: 2

Answer to query: X = P9

4. Query clause: ← sub− component(P4, X)
Program clause: sub−component(X1, Y1)← component(X1, Z1), sub−
component(Z1, Y1)
Unification substitution: P4 for X1 and X for Y1
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Modified query clause: ← component(P4, Z1), sub− component(Z1, X)
Program clause: component(P4, P7)←
Unification substitution: P7 for Z1

Modified query clause: ← sub− component(P7, X)
Program clause: sub− component(X1, Y1)← component(X1, Y1)
Unification substitution: P7 for X1 and X for Y1

Modified query clause: ← component(P7, X)
Program clause: component(P7, P10)←
Unification substitution: P10 for X
Modified query clause: 2

Answer to query: X = P10

So the answers to the query are: P4, P7, P9, and P10.
Bottom-up Approach: The facts in the database can be represented by
the relation

component
P1 P2

P1 P3

P1 P4

P2 P5

P2 P6

P4 P7

P4 P8

P7 P9

P7 P10

and the sub-component relation can be computed by solving the following
relational algebraic equation:

sub− component = component ∪ π1,4(σ2=3(component× sub− component))

The answer to the query can be obtained by evaluating the following rela-
tional algebraic expression:

answer = π2(σ1=P4(subcomponent))

Doing so, we obtain the following answer:
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answer
P7

P8

P9

P10

The bottom up approach yields all answers to queries at the same time,
whereas the top down approach obtains one answer at a time. As a result,
in the presence of a large number of facts and rules, the top down approach
is very inefficient. On the other hand, bottom up approach is not (yet)
applicable in a general case of deductive databases. There has been some
work in combining these two approaches to make use of the advantages of
both (see [Ull88] for a detailed discussion).

3.3 Indefinite Deductive Databases

If one wants to allow facts of the form Lives(Smith,NY C)∨Lives(Smith,DC),
which states that Smith lives in NYC or in DC but there is not enough in-
formation to ascertain where, and rules of the form

father(X,Y) ∨ mother(X,Y) ← parent(X,Y)

which states that if X is a parent of Y then X is either the father of Y or the
mother of Y, then what one needs is an indefinite deductive database, also
known under the name of database with incomplete information.

Let us consider the following indefinite deductive database:
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sibling(Gary, Chris)←
sibling(Chris,Gary)←
sibling(Pat,Mark)←
sibling(Mark, Pat)←
sibling(Liz, Pat)←
sibling(Pat, Liz)←
sibling(Mark, Craig) ∨ sibling(Mark,Don)←
sibling(Craig,Mark) ∨ sibling(Don,Mark)←
male ancestor(Mark, Tom)←
male ancestor(Sam, James)←
female ancestor(Pat, Tom)←
male ancestor(Chris, Tom) ∨ female ancestor(Chris, Tom)←
ancestor(X, Y )← male ancestor(X, Y )
ancestor(X, Y )← female ancestor(X, Y )

and the query: Find all the siblings of the ancestors of Tom. Based on the
semantics of the indefinite deductive database, the answer to this query is

{< Pat >,< Liz >,< Gary >,< Craig > + < Don >}

The notion of answer to a query in such a database is different. It has
been introduced and discussed in [Lip77, Rei78a, Rei84]. The semantics of
indefinite deductive databases and a top-down approach to answer queries,
called SLI resolution procedure, has been defined in [MR89]. However, effi-
cient and computationally feasible procedures to compute answers to queries
in indefinite deductive databases is still a topic for future research. Some
work has already been reported. Henschen and Park [HP88] compute yes/no
answers to queries posed over an indefinite deductive database, Grant and
Minker [GM86] provide an algorithm to check if a candidate answer to a
query over an indefinite deductive database is in fact an answer and develop
an algorithm to find all minimal answers to a query, and Liu and Sunderra-
man [LS90] generalize the relational model to represent indefinite information
and provide an extended relational algebra to compute answers to queries.

4 Closed World Assumptions

As it has been mentioned in the Introduction, the closed world assumption
constitutes a landmark, from which the area of deductive databases begins.
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Therefore the proper understanding of this concept is a necessary prerequi-
site for anyone seriously interested in the theory or applications of deductive
databases. In this section, we provide the reader with an insight into the
nature of the closed world assumption without going into unnecessary tech-
nicalities.

It was perhaps a need for efficient representation of information in a
database that resulted in the emergence of the closed world assumption. For
the purpose of keeping this representation as compact as possible a choice
of appropriate language is desired, and indeed there is a quite natural cri-
terion of selection one usually adopts in such circumstances: entries with
high information content, as being the most likely (or desired) candidates
for storing in a database, should have possibly the simplest syntactic form.
In case of predicate languages, customarily used for symbolic representa-
tion of information, this simplest form is materialized by atomic (and hence
positive) statements. This natural convention, if successfully applied, has
certain important consequences regarding the form of objectively true sen-
tences expressible in the selected language. Since the amount of information
in a statement is inversely proportional to its probability, or frequency of
occurrence, it is a negative form of information that prevails. This is an id-
iosyncrasy of the very particular choice of the representation language, and
would not necessarily hold if another selection criterion was utilized. It causes
that a hypothetical database containing a complete description of the real
world in question consists of a few positive statements in a deluge of nega-
tive information. Once the database designer realizes this fact, the solution
to the problem of efficient representation becomes clear: only the positive
statements are physically represented in the database, while all the negative
ones are implicitly assumed by default. This makes the essence of the closed
world assumption in the sense of Reiter.

Formally, the closed world assumption may be defined as follows:

If an atomic sentence φ is not entailed by the information con-
tained in a database then assert ¬φ.

Example 4.1 Suppose that the world of discourse is a collection of suppliers
of raw materials and pending orders of such materials. A sample language
suitable for representing the state of affairs in our world of discourse contains
one binary predicate symbol SUPPLIES and one 5-ary predicate symbol OR-
DER, 7 constant symbols S1, S2, S3, P1, P2, P3, P4, and a collection of numeric
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constant symbols. SUPPLIES(S, P ) means “Supplier S supplies part P”
and ORDER(N,P, S,Q,D) means “There is an order with order number N
for part P with supplier S for quantity Q with a delivery date of D”. Let us
consider the following content of a database:

SUPPLIES(S1, P1)
SUPPLIES(S1, P2)
SUPPLIES(S2, P2)
SUPPLIES(S2, P3)
SUPPLIES(S3, P3)
ORDER(1, P2, S2, 100, 1/30/90)
ORDER(2, P2, S2, 150, 6/30/90)
ORDER(3, P3, S2, 750, 3/15/90)
ORDER(4, P3, S2, 750, 9/15/90)
ORDER(5, P3, S2, 500, 12/15/90)

The statement “There is a supplier who supplies both P1 and P2” (namely S1)
is a logical consequence of the database. The statement “P1 has not been
ordered” is not a logical consequence of the database, however, it follows
from the database under the closed world assumption. This coincides with
the natural interpretation of the content of the database. To store all the
negative information implied by the closed world assumption one has to add
negative statements of the form

¬SUPPLIES(X, Y )

and a prohibitively large number of statements of the form

¬ORDER(X, Y, Z, U, V ).

Besides the waste of database memory, the usefulness of statements like

¬ORDER(7348, R3, S1, 57942, 1/29/90)

is at the least doubtful, since its information content is next to zero.
If our database is supposed to admit information about the current sta-

tus and timely realization of orders then a new unary predicate symbol
DELAY may be necessary, where DELAY (X) means “Order with order
number X is delayed”. If we assume that DELAY (2) is an entry in the
database then under the closed world assumption we can infer ¬DELAY (1),
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¬DELAY (3), etc., without the necessity of representing these facts in the
database. In the case where most of the orders are subject to a delay the
statement ¬DELAY (1), if true, is more informative than DELAY (1), and
therefore a different extension of the database is more appropriate: instead
of DELAY , another unary predicate symbol ON−TIME may be used. Al-
though ON − TIME(1) has, formally, the same meaning as ¬DELAY (1),
in the case where the order with order number 1 is the only order not subject
to a delay (which means that the probability of delay is, say, around 80%),
under the closed world assumption one statement ON − TIME(1) substi-
tutes for 4 statements DELAY (2), . . . , DELAY (5). *
2

The above example clearly shows that for the purpose of effective mini-
mization of the size of symbolic representation, the choice of representation
language has to depend on the probability distribution in the space of rep-
resentable events.

Reiter’s closed world assumption is, in the case of a reasonable choice of
representation language, equivalent to asserting by default facts which are
most likely to happen. This natural scheme, however, is known to lead to
a contradiction when applied to indefinite databases. For example, applying
the closed world assumption to a database consisting of one entry

SUPPLIES(S2, P1) ∨ SUPPLIES(S3, P1)

one can infer both ¬SUPPLIES(S2, P1) (since SUPPLIES(S2, P1) is not
contained in the database) and ¬SUPPLIES(S3, P1) (same reason as be-
fore), or by de Morgan’s law

¬(SUPPLIES(S2, P1) ∨ SUPPLIES(S3, P1)),

a conclusion that clearly contradicts the actual content of the database.
Therefore, the proper treatment of default negative information requires a
more subtle technique for indefinite databases.

One of the best proven methods of avoiding inconsistency in a formal
system is to provide it with a precise meaning, so that the formal deductions
allowed in this system preserve all possible meanings for the premises used
in such deductions. This concept is known in linguistics (and in logic) under
the name of semantics. In particular, any first-order language, including the
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one of the example in this section, has its first-order semantics. Finding
an appropriate semantics for the closed world assumption is our first step
towards its consistent generalization over indefinite databases.

Let us take a closer look at the semantic effects of applying the closed
world assumption to a definite database, DB of the form {P (C1, . . . , Ck), P (D1, . . . , Dk), . . .}.
What the closed world assumption says is that the only tuples which be-
long to the relation P are those explicitly specified in DB, i.e. (C1, . . . , Ck),
(D1, . . . , Dk), . . ., etc. Of course, DB itself logically entails that these tuples
are in P , but it does not entail, in case of absence of negative information,
that no other tuples (namely, those not specified in DB, e.g. (A1, . . . , Ak),
are not in P . Thus the closed world assumption + DB describes (unambigu-
ously) P as the least relation containing all the tuples listed in DB. From
this observation we conclude that the closed world assumption restricts the
meaning of the database in question to collection of relations that are mini-
mal (in the sense of set-theoretic inclusion ⊆). This minimization is indeed
the semantics of the closed world assumption which will allow for its gen-
eralization over indefinite databases. The following definition of minimal
entailment provides the intentional semantics of this generalization.

A clause φ is minimally entailed by a database if and only if φ is
true in all minimal models of DB

Example 4.2 The database

SUPPLIES(S1, P1)
SUPPLIES(S2, P1)
SUPPLIES(S2, P2)
SUPPLIES(S2, P2)
SUPPLIES(S3, P3)

has 27 models (i.e. 27 different Sis and Pjs, i,j = 1,2,3, satisfy all statements
of this database). For example the set

ALL = {< Si, Pj > |i, j = 1, 2, 3}

of all combinations of Sis and Pjs is a model of this database. Exactly one
of them, namely

{< S1, P1 >,< S2, P1 >,< S2, P2 >,< S2, P3 >,< S3, P3 >}
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is the minimal model of the database. The clause ¬SUPPLIES(S1, P3)
follows from this database under the closed world assumption. This clause
is true in the minimal model of this database, i.e. it is minimally entailed
by this database. However, this clause is not true in certain (non-minimal)
models of this database, e.g. it is not true in the model ALL mentioned above.
Therefore ¬SUPPLIES(S1, P3) is not entailed logically by this database. *
2

Example 4.3 The database

SUPPLIES(S1, P1)
SUPPLIES(S2, P2)
SUPPLIES(S3, P3)
SUPPLIES(S2, P1) ∨ SUPPLIES(S2, P3)

has 3 × 27 models, e.g. the set ALL of the previous example is a model of
this database. Two of them, namely

{< S1, P1 >,< S2, P1 >,< S2, P2 >,< S3, P3 >}

and

{< S1, P1 >,< S2, P2 >,< S2, P3 >,< S3, P3 >}

are minimal models of this database. The clauses ¬SUPPLIES(S2, P1) and
¬SUPPLIES(S2, P3) follow from this database under the closed world as-
sumption. Neither of them, however, is minimally entailed by this database:
¬SUPPLIES(S2, P1) is false in the first minimal model (because SUPPLIES(S2, P1)
is true in this model), and ¬SUPPLIES(S2, P3) is false in the second min-
imal model of this database. *
2

The minimal entailment makes the semantic equivalent of the closed world
assumption. It does not seem, however, at least as it is, particularly useful
substitute for the closed world assumption. One can expect that the com-
binatorial explosion of models practically precludes an efficient method of
enumeration of all the minimal models of a database, making the problem:
“Is φ true in all minimal models of the database” rather hard for direct ver-
ification. As in the case of logical entailments, finding appropriate syntactic
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characterizations of this concept by means of a proof procedure may bring
us closer to a computationally feasible solution of this problem.

The question of a pure syntactic characterization of minimal entailment
remained open for almost a decade. Although a generalized closed world
assumption GCWA proposed by Minker provided a partial answer to this
question, and has been known to avoid the inconsistency paradox of the closed
world assumption, it did not completely solve the problem of characterization
for disjunctive or quantified queries. It has been demonstrated (Shepherdson)
that for purely relational language ( no function symbols and no equality
symbol ) and for any literal A in this language, the following property holds:

A is true in all discriminant models of deductive database D iff
GCWA + D proves A

but for disjunctive statements the above characterization is no longer true.
Finally, this problem received a surprisingly simple answer in terms of certain
modification cwaS of the closed world assumption, introduced by Suchenek
in [Suc87]. Since, as has been observed before, representing only positive
information in a database has been recognized as an efficient means for min-
imization of the physical size of the database, one can suspect that any
positive statement not derivable from the database was not intended as its
implicit consequence. Of course, it was a matter of proof (see [Suc89]), nev-
ertheless it seems intuitively acceptable that the following version cwaS of
the closed world assumption provides a complete syntactic characterization
of the minimal entailment:

If adding clause φ to a database DB does not enlarge the set of
positive logical consequences of DB then assert φ.

One may show by not so difficult inspection that for quantifier-free clause φ
and definite database DB, cwaS +DB proves φ if and only if cwa+DB proves
φ. For more complex clauses and for indefinite databases, this equivalence is
no longer true. In particular, cwaS, as having semantic counterpart (namely,
the minimal entailment), may never lead to a contradiction. This is an
important feature that Reiter’s cwa does not possess. It also has been shown
in [Suc89] that Minker’s GCWA may be equivalently expressed by restricting
the scope of the clause φ in the definition of cwaS to atomic and negated
atomic sentences.
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Example 4.4 Let us recall the example of a database DB

SUPPLIES(S2, P1) ∨ SUPPLIES(S3, P1)

We demonstrated that reiter’s cwa is inconsistent, namely the database un-
der the cwa proves both ¬SUPPLIES(S2, P1) and ¬SUPPLIES(S2, P1).
Let us see why cwaS does not lead to a contradiction when applied to
this database. Is ¬SUPPLIES(S2, P1) implied by DB under cwaS? To
answer this question, we have to consider positive logical consequences of
DB′ = ¬SUPPLIES(S2, P1) +DB. We have DB′ logically implies

¬SUPPLIES(S2, P1) ∧ (SUPPLIES(S2, P1) ∨ SUPPLIES(S3, P1)),

that is to say, DB′ implies SUPPLIES(S3, P1). This is a positive clause
which is not derivable from DB itself. Therefore, by the definition of cwaS,
DB + CWAS does not assert ¬SUPPLIES(S2, P1). Similarly, one can
verify that cwaS + DB does not assert ¬SUPPLIES(S3, P1) either. The
inconsistency caused by Reiter’s cwa has disappeared. * 2

The closed world assumption in any of its forms discussed above ( cwa,
GCWA, cwaS ) minimizes evenly all relation symbols of the database’s lan-
guage, which is not particularly desirable if the database in question con-
sists of conceptual layers built one upon another. If, for example, deductive
database is a result of translation of certain relational database with incor-
porated views, then the image of the physical level and images of these views
may not necessarily need a uniform treatment. To the contrary, one can
expect that relations which belong to the images of more primitive views
should be minimized before the others. This observation brings us to the
problem of prioritized minimization.

There are several possible approaches to incorporate priorities into mini-
mal model semantics. In some logic programs, as we will see in section 5, such
priorities are implicitly introduced by certain preference relation, defined in
class of minimal models, induced by a form of logic program in question. In
more general artificial intelligence context, prioritized circumscription tackles
this problem from position of power, or in other words, second order logic.

Here, we demonstrate how cwaS may be successfully used to allow for
prioritized minimization. We start from a modified example from Clark’s
paper [Cla78].
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Example 4.5 Let D be a deductive database with the extension:

DE = { student(J.Brown) ←
student(D.Smith) ←
takes(J.Brown,C101) ←
takes(D.Smith,C101) ←
takes(D.Smith,C301) ←
math course(C101) ←
math course(C301) ← }

(which may be interpreted as an image of the physical level of a relational
database) and the intension:

DI = {non math major(X) ∨ takes(X, Y )←
student(X) ∧math course(Y )}

(which may be interpreted as an image of a view of this relational database),
i.e.

D = DE ∪DI .

DE lists students, courses and enrollments. DI says that a student who does
not take all listed maths courses is a non-math major. This database has two
classes of minimal models: one, in which non math major(J.Brown) is true
and takes(J.Brown,C301) is false, and the other, in which non math major(J.Brown)
is false and takes(J.Brown,C301) is true. It seems clear that only the first
group of models is adequate to intuitive comprehension of the content of the
databaseD. In particular, one can expect thatD implies non math major(J.Brown).
However, D does not minimally entail non math major(J.Brown) since this
sentence is false in the second class of minimal models of D. Therefore,
cwaS +D does not prove non math major(J.Brown). * 2

If a deductive database in question is indeed a result of translating a phys-
ical level of relational database with several views implemented on it then
the proper cure of the above situation is quite simple: first, the image of the
physical level should be minimized, and only after that images of views should
undergo subsequent minimization. To achieve this effect using cwaS one has
to apply it several times to the appropriately layered database, starting from
the core, corresponding to the physical level, and proceeding from inner to
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outer layers. In the above example this proper mode of prioritized mini-
mization is to first minimize simultaneously predicates student, takes and
math course, and after that to minimize predicate non math major. This
kind of minimization is achieved by a double application of cwaS:

cwaS(DI ∪ cwaS(DE)).

Let us verify that this proves non math major(J.Brown). First, let us show
that cwaS(DE) proves ¬takes(J.Brown,C301). Indeed, all positive ground
clauses provable from DE ∪ {¬takes(J.Brown,C301)} (within the language
of DE) are already provable from DE. Since in this model, universal quan-
tification ∀Xφ(X) is equivalent to

φ(J.Brown) ∧ φ(D.Smith) ∧ φ(C101) ∧ φ(C301),

from this we infer that all positive clauses (not only ground ones) provable
from

DE ∪ {¬takes(J.Brown,C301)}

are already provable fromDE. Now, DI∪cwaS(DE) proves non math major(J.Brown),
because

DI ∪DE ∪ {¬takes(J.Brown,C301)}

does. Therefore, cwaS(DI ∪ cwaS(DE)) proves the same statement. It may
be noted that the second application of cwaS, which ensures minimiza-
tion of predicate non math major, was actually not necessary for proof of
non math major(J.Brown). It is necessary, however, to prove ¬non math major(J.Brown).

In a more complex scenario, appropriate precaution should be taken while
minimizing layers of deductive databases. For example, if D is an image of
a relational database of the form

xxx
xxx

say, D0 is an image of the physical level, and D1, D2, D3 are images of
view1, view2, view3 respectively, then appropriate prioritized minimization
of D is achieved by

cwaS(D3 ∪ (cwaS(D1 ∪ cwaS(D0)) ∪ cwaS(D2 ∪ cwaS(D0)))).
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Constructions of the above form, although intuitively obvious, are currently
under investigation and require further research.

Not surprisingly, cwaS is computationally more complex than the cwa,
and in the general case of large indefinite databases there is little hope that
the question “Does φ enlarge the set of positive logical consequences of a
database” will ever be answered (After all, reasoning under cwa leads to un-
decidable problems). What is more surprising is that the GCWA, although
seemingly much simpler than cwaS (only atomic and negated atomic clauses
φ are considered in GCWA), is essentially of the same order of complexity as
cwaS. This seems to be a common disadvantage of many reasoning systems:
even PROLOG resolution refutation procedure may never stop if the order of
the disjunct in a definition clause is inappropriate. It does not preclude, how-
ever, any practical use of PROLOG, and the same may be said about cwaS.
As a matter of fact, there is some promising progress toward the utilization
of resolution principle on the one hand (cf. [MR89]), and model-theoretic
forcing (cf. [Suc89]) on the other, for the purpose of providing cwaS and
GCWA with reasonably efficient operational approximations. These topics,
however, remain out of the scope of the present paper.

5 Deductive Databases vs Logic Programming

The areas of deductive databases and logic programming are so similar that
the relationship between them require a special mention. These two phe-
nomena grew from different grounds, however, and there used to be separate
research activities pertinent to each of them. Recently, there has been a sub-
stantial interplay between these two, as the inspirations, ideas, and results
from one area infiltrate the other. This migration of methodology caused
certain confusion among the general audience, which has been amplified by
a lack of clear widely accepted taxonomy. In particular, the rather extensive
use of the term “logic” in the context of deductive databases, as in “logic
databases”, contributed to the not so uncommon misuse of terminology. So,
it is actually the subtle difference between them which requires an explana-
tion. To see this problem from a proper perspective, however, let us start
from the similarities.

Similarly to deductive databases, logic programs are composed of a finite
number of clauses (actually deductive databases borrowed this form from
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logic programming). Originally, they were required to consist exclusively of
definite clauses [vEK76]., however, recently the general logic programs with
indefinite clauses have also been considered useful [MR89]. Therefore, as far
as the expressive power is concerned, there is no essential difference between
logic programs and deductive databases, although a typical logic program will
probably contain much fewer ground clauses (facts) than a typical deductive
database. Moreover, indefinite clauses allowed in deductive databases have
a different form, namely

A1,∨ · · ·An ← B1 ∧ · · ·Bm

than indefinite clauses allowed in logic programs:

A1 ← B1 ∧ · · ·Bm ∧ ¬A2 ∧ · · · ∧ ¬An

Similarly as in deductive databases, in logic programs negation is weaker
than in first-order logic: for every positive literal, if ¬P is provable from a
consistent program in the classical sense then ¬P will also be derived using
any of existing sound negation as finite failure procedures, but not necessarily
vice versa. Moreover, in the case of definite databases and logic programs,
the intended meaning of negation is, as we will see, the same for both.

The last similarity brings us to one of the essential differences between
logic programs and deductive databases: in the general indefinite case, their
semantics do not coincide. Semantics for logic programs is operational, de-
fined in terms of resolution with negation treated as finite failure to prove,
while semantics for deductive databases is denotational, based on the notion
of minimal model. As a result, negation in indefinite deductive databases gets
a different meaning than in indefinite logic programs. Moreover, this differ-
ence is by no means small; semantics of indefinite logic programs can distin-
guish between logically equivalent clauses, as opposed to deductive databases,
and of course to first-order logic. This is a result of different rules for inferring
negative conclusions in deductive databases and logic programming.

As opposed to deductive databases, where various versions of the closed
world assumption are used, in logic programs the following rule of [Cla78] is
applied to derive negative ground literal ¬L:

If the execution of program P on goal L finitely fails ( i.e. it is
evident that L cannot be achieved ) then assert ¬L.
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This negation as failure rule is, to all appearances, very similar to Reiter’s
version of cwa, where ¬L is asserted if L cannot be proved. It should be men-
tioned that “provability” in case of negation as finite failure means, somewhat
recursively, provability using possibly negation as finite failure, while in case
of cwa, it is pure first-order provability. Let us consider the following.

Example 5.1 The clause

Father(Pat,Gary)← Parent(Pat,Gary) ∧ ¬Mother(Pat,Gary)

and the clause

Mother(Pat,Gary)← Parent(Pat,Gary) ∧ ¬Father(Pat,Gary)

are indefinite program clauses, logically equivalent to the following disjunctive
clause:

Father(Pat,Gary) ∨Mother(Pat,Gary)← Parent(Pat,Gary)

and therefore equivalent to each other. The programs

P = { Father(Pat,Gary)← Parent(Pat,Gary),¬Mother(Pat,Gary)
Parent(Pat,Gary)← }

and

Q = { Mother(Pat,Gary)← Parent(Pat,Gary),¬Father(Pat,Gary)
Parent(Pat,Gary)← }

are perfectly legal indefinite logic programs. Although P and Q are logically
equivalent ( in the sense that one is derivable from the other within first-order
logic ), they do not return the same answer to the query

← Father(Pat,Gary)

In particular, program P returns the answer “yes” and program Q returns the
answer “no”. In case of program Q, this query cannot be matched, or more
precisely unified, with a head of any clause of P, therefore attempt of proving
Father(Pat,Gary) fails finitely ( namely in one step ). Negation as finite
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failure rule yields ¬Father(Pat,Gary). In case of program P, this query triv-
ially unifies with the head of the first clause of P, which subsequently causes
the sub-queries Parent(Pat,Gary) and ¬Mother(Pat,Gary) to be issued.
Both of these sub-queries are answered “yes’, the first one after trivial unifi-
cation and the second one after finite failure of proving Mother(Pat,Gary).

* 2

The nature of this paper does not allow us to discuss the technicalities
necessary for full explanation of the above phenomenon. To give an idea,
however, why this is so, consider the set of minimal models for P and Q.
Both programs are equivalent to the following sentence

[(Father(Pat,Gary) ∨Mother(Pat,Gary)←
Parent(Pat,Gary))] ∧ Parent(Pat,Gary)

or, in other words, to

Father(Pat,Gary) ∨Mother(Pat,Gary).

Because equivalent sentences have the same models, in particular the same
minimal models, the minimal models for P coincide with minimal models for
Father(Pat,Gary) ∨ Mother(Pat,Gary), and of course coincide with the
minimal models for Q. The entire class of minimal models for Father(Pat,Gary)∨
Mother(Pat,Gary) may be split onto two disjoint classes: models in which
Father(Pat,Gary) ∧ ¬Mother(Pat,Gary) is true, and models in which
¬Father(Pat,Gary)∧Mother(Pat,Gary) is true. It turns out that the first
class makes the semantics of the program P, while the second one makes the
semantics of the program Q. For the logically equivalent deductive database

D = {Father(Pat,Gary) ∨Mother(Pat,Gary)← Parent(Pat,Gary)
Parent(Pat,Gary)}

the entire union of the two classes constitutes a valid semantics. This means
that a form of a logic program encodes certain relation of preference, which
favors some minimal models ( e.g. those satisfying Father(Pat,Gary) ∧
¬Mother(Pat,Gary) in case of program P ) over others ( in this case, those
satisfying Mother(Pat,Gary) ∧ ¬Father(Pat,Gary) ). It may seem coun-
terintuitive, or unacceptable, but it is not, as the following example borrowed
from [Prz87] shows.
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Example 5.2 Let us assume that Einstein is a physicist, Iacocca is a busi-
nessman and that a typical businessman avoids using mathematics unless he
happens to be a good mathematician. This information can be represented
as the following clauses

avoids math(X) ← businessman(X),¬good mathematician(X)
businessman(Iacocca)
physicist(Einstein)

This logic program has two minimal Herbrand models. In both, Iacocca is the
only businessman and Einstein is the only physicist. In one of the models, Ia-
cocca avoids mathematics and in the other Iacocca is a good mathematician.
The intended meaning of this program is not captured by both the models.
Since we have no information on whether Iacocca is a good mathematician,
we are inclined to infer that he avoids using mathematics. Therefore, only
the first minimal model in which Iacocca avoids mathematics seems to cor-
respond to the intended meaning of the logic program.

* 2

More extensive discussion of preferred model semantics and variations of
the above may be found in [Prz87].

Since every set of definite clauses, and therefore every definite logic pro-
gram has exactly one minimal Herbrand model, the least Herbrand model,
the relation of preference becomes irrelevant in such a case ( its domain has
one element to choose from ). Therefore, definite logic programs and def-
inite deductive databases are equivalent from semantic point of view. In
particular, negation has exactly the same meaning in both of them.

If someone hopes that to express the meaning of a deductive database it
suffices to combine all logic programs logically equivalent to the database then
he or she is wrong. The following example shows that logic programs may
hardly be accepted as operational implementations of indefinite deductive
databases.

Example 5.3 Let us consider the deductive database

D = { male(X) ∨ female(X)← human(X),
human(Raj)
human(Radhika)}
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There are two logic programs equivalent to D:

P = { male(X)← human(X) ∧ ¬female(X),
human(Raj)
human(Radhika)}

Q = { female(X)← human(X) ∧ ¬male(X),
human(Raj)
human(Radhika)}

Neither of these two programs allow the clause

male(Raj) ∧ female(Radhika)

to be true. What is worse is that every computation of P and Q proves

male(Raj) ≡ male(Radhika)

and the program R = P ∪ Q will never stop on query containing male or
female. Of course, in certain minimal model of D, both male(Raj) and
female(Radhika) hold.

* 2

There are, of course, other differences between deductive databases and
logic programs, but since negation constitutes the main subject of this paper,
we will mention them only briefly.

• In deductive databases, queries with free variables, e.g. P (X, Y ) are
answered by a set of tuples of ground terms, e.g.

{(t1, s1), . . . , (tn, sn)}

satisfying the query. In logic programs goals are universally quantified
( implicitly ), therefore the only outcome of computation may be true
or false. In this respect queries directed to deductive databases are
strictly more expressive than goals directed to logic programs.

• In deductive databases, similar perhaps to all other kinds of databases,
a separate class of issues and techniques are associated with updates,
which do not belong to the typical domain of logic programs. Conse-
quently, such activities, pertinent to databases, as integrity protection,
are not present in logic programs.
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It is not very hard to guess that all the attributes distinguishing logic pro-
grams from deductive databases pertain also to PROLOG. Moreover, because
of deterministic selection of subgoals and modified unification algorithm in
PROLOG, deductive databases are relatively more remote from PROLOG
programs than from logic programs. A more detailed analysis of relevant dif-
ferences involving excessive amount of technicalities is well beyond the scope
of this paper. It should be mentioned, however, that this language has been
successfully used in implementations of various ( not necessarily deductive )
databases [Li84].

6 Perspectives

6.1 History

In this section we will briefly describe some of the important landmarks in
the development of the fields of deductive databases and logic programming,
with certain emphasis on achievements contributing to the proper treatment
and understanding of negation.

In 1965, Robinson [Rob65] introduced the resolution principle, a uni-
form method for performing automated deduction. This principle is used
by automated deduction systems, the so called theorem provers. Using the
resolution principle, Green and Raphael [GR68] designed the system QA3.5
which showed the viability of implementing deductive databases in a uniform
manner. Then, in 1977, the workshop on Logic and Databases, [GM78], pro-
duced a number of important papers that established deductive databases
as a legitimate field on its own. Clark’s paper on negation as failure and
completed database, [Cla78], introduced the meta-rule, negation as finite
failure, to solve the problem of inferring negative information from a de-
ductive database, in a logic programming context. In this paper, deductive
databases were treated as a special case of logic programs with a large number
of facts and only few rules. This conjecture has not been widely accepted: as
we have seen there are essential differences between deductive databases and
logic programs (cf. [Aptar], section 8.3, deductive databases). Consequently
negation as failure and its denotational equivalent: program completion have
finally found their place in logic programming. Reiter’s paper on the closed
world assumption, [Rei78b], discussed the notion of inferring negative infor-
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mation from deductive databases with clear motivations from the relational
model of a database. He also introduced the notion of a query and answers to
queries in deductive databases there. The closed world assumption may be
understood as the database counterpart of Clark’s negation as failure rule.

In the logic programming front, Kowalski proposed the use of logic as a
programming language in [Kow74]. The paper by van Emden and Kowalski,
[vEK76], introduced the notion of unique minimal model of a set of definite
clauses and used a fix-point operator to characterize the meaning of defi-
nite logic programs. In 1982, Minker introduced the generalized closed world
assumption, [Min82], which extends the closed world assumption over indefi-
nite deductive databases. Apt and van Emden, [AvE82], characterized linear
resolution with selection function in definite logic programs with negation as
finite failure (SLDNF) in terms of the fix-point operator. Jaffer, Lassez and
Lloyd proved the completeness of negation as finite failure in [JLL83]. Reiter,
[Rei84], described formal theories of deductive databases. Lloyd and Topor
use Prolog as a query evaluator in [LT84]. Shepherdson, in [She88], provides
a proof of the relationships between CWA, GCWA, and minimal semantics.
A problem of syntactic characterization of minimal semantics, implicit target
of all above mentioned constructs (closed world assumptions, finite failure)
has been recently solved in [Suc89]. An excellent source of exhaustive in-
troduction to logic programming is [Aptar]. The book by Lloyd [Llo87] is
another source of the developments in the field of logic programming.

Although most of the work in deductive databases and logic program-
ming has been done over the last two decades, the notion of closed world
assumption has been used implicitly in automated reasoning systems well
before deductive databases. In particular, FORTRAN compilers (late fifties)
actually used it (without mentioning its name, of course) while solving a
system of equivalences defined by EQUIVALENCE statements.

6.2 Experimental Deductive Database Systems

At present there are no commercial deductive database systems. However,
there are a number of experimental projects that may result in commercial
systems in the near future. We shall very briefly describe three such projects.

NAIL! (Not Another Implementation of Logic!) is an experimental deduc-
tive database system under development at Stanford University. The system
restricts the clauses or rules to be definite, however negative literals may
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appear in the body of the rule with certain restrictions. The user may ask
queries of the deductive database using the query clause. More information
can be obtained from [MUG86], and [Ull85].

LDL (Logic Data Language) is another deductive database system and
language under development at MCC, in Austin, Texas. Like NAIL!, LDL
also restricts the clauses or rules to be definite while allowing negative literals
in the body of the rules under certain restrictions, however, LDL is a more
comprehensive system which includes a database management system as well
as a logic processor. Some references for LDL are [NT88], [Zan88], and
[COK+87].

POSTGRES is a successor to the INGRES project under development at
the University of California at Berkeley. Its objective is to extend INGRES
in a natural way to be capable of reasoning with definite rules. Its query lan-
guage is an extension of QUEL called POSTQUEL. Additional information
can be found in [SR86a], [SR86b] and [Wen88].

The two volume set of books on the principles of database and knowledge-
base systems by Ullman [Ull88] contain detailed discussion on the various
techniques used in most of these systems.

7 Summary
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