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STRESZCZENIE
Artykuł stanowi dogłębne studium semantyki logiki autoepistemicznej wykorzystujace wyniki

wieloletnich badań autora w tym przedmiocie. Rozpoczyna się ono od skrótowego przeglądu semantyk
powszechnie stosowanych wzorców niemonotonicznej dedukcij biorącej się z braku wiedzy, włączając
w to dedukcję autoepistemiczną, w terminach równania stałopunktowego Φ(T,E) = E. Następnie
bada ono wąsko semantykę minimalnych ekspansji dla zdaniowej logiki autoepistemicznej oraz jej
operację CnAE odpowiatającą schematowi wnioskowania opartemu na założeniu “wiedząc tylko”. W
szczególności następujące zalożenie MKA o minimalności wiedzy:

ϕ ∈ MKA(T ) wtedy, i tylko wtedy, gdy ϕ nie dokłada modalnie pozytywnych S5-
konsekwencji do T

jest używane w celu syntaktycznego scharakteryzowania operacji CnAE przy pomocy stosownego
twierdzenia o pełności.

Artykuł oferuje również dowód, że operacja konsekwencji CnS5 logiki modalnej S5 jest maksymalną
monotoniczną operacją konsekwencji spełniającą CnS5(T ) ⊆MKA(T ) dla każdej teorii modalnej T .

ABSTRACT
This paper comprises an in-depth study of semantics of autoepistemic logic that is based on

author’s may years of research in the subject matter. It begins with a brief review of semantics of
common patterns of nonmonotonic deduction arising from a lack of knowledge, including autoepis-
temic deduction, in terms of the fixed-point equation Φ(T,E) = E. Then it narrowly investigates
minimal expansion semantics for autoepistemic propositional logic and its “only knowing” conse-
quence operation CnAE . In particular, the following minimal-knowledge assumption MKA:

ϕ ∈MKA(T ) iff ϕ does not add modally positive S5-consequences to T
is used to syntactically characterize the operation CnAE by means of suitable completeness theorem.
The paper also offers a proof that the consequence operation CnS5 of modal logic S5 is the maximal
monotonic consequence operation satisfying CnS5(T ) ⊆MKA(T ) for every modal theory T .
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INTRODUCTION
Formal methods of knowledge representation are a topic of central interest in theoretical research
in Artificial Intelligence. Adequate assessment of the information contained in knowledge bases, and
- in particular - deriving secondary knowledge from a lack of certain information or knowledge, is
one of the most challenging problems in this area. One of the concepts that has been used as a
theoretic framework for such assessment is introspection. It allows one to formally express what does
the knowledge base in question know and what it does not.

This paper addresses certain logical aspects related to introspection in the said context, providing
characterization of nonmonotonic deduction based on such introspection.
The paper is organized as follows.
Section 1 provides a brief review of major patterns of nonomonotonic inferences that arise from a

lack of knowledge.
Section 2 introduces the language and semantics of autoepistemic logic.
Sections 3, 4, and 5 constitute a brief review of fundamental concepts involved in construction of

autoepistemic logic, and their basic properties known from the literature. Section 3 introduces the
concept of stable theory, and relates the consequence operation induced by that concept to modal
system S5. Section 4 introduces universal Kripke structures and proves that they are completely
axiomatized by S5. Section 5 defines the autoepistemic semantics based on the concept of minimal
expansion, and proves that this semantics is equivalent to the semantics of maximal universal Kripke
models.
Sections 6 and 7 consist of technicalities needed to prove the completeness theorem for autoepistemic

logic. Section 6 shows the S5-reducibility of autoepistemic theories to certain normal and clausal forms.
Section 7 translates two classic results from first-order model theory into the language of autoepistemic
logic: a version of Lyndon homomorphism theorem and Bossu-Siegel minimal modelability lemma.
Section 8 defines the minimal knowledge assumption (MKA), proves that MKA completely charac-

terizes CnAE , and discusses certain consequences of that fact. The characterization of CnAE is used
to assess limitations of the proving power of AE logic. Although, indeed, CnAE cannot prove any new
modally positive sentences from T , which in my opinion is exactly what it should not do, a stratified
application of MKA can. I will comment on that in Section 9.

Section 10 briefly relates the presented approach to relevant results of others, and points out certain
undesirable properties of some of them.
Section 11 mentions some other major schemes of nonmonotonic deduction.



1. A BRIEF REVIEW OF NONMONOTONIC DEDUCTION
Interest in nonmonotonic reasoning originated from a need to formalize methods of drawing conclu-
sions from the absence of information or a lack of knowledge. To that end, in addition to axioms and
(monotonic) rules of inference, one may adopt rules of the form

6` ϕ | · · ·
ψ

(meaning: if ϕ is not provable2, and · · · , then infer ψ). Rules of this kind are nonmonotonic in that,
unlike in classical logic, they can prove more from less premises. However, because in systems that
admit nonmonotonic rules of inference the notion of provability is potentially dependent on non-
provability, defining a deductive closure for such systems that would avoid falling into a pitfall of
circular definition was considerably more involved than the similar task in monotonic logic. This
has usually been accomplished by having the deductive closure implicitly defined by the fixed-point
equation

Φ(T,E) = E (1)
that is expressed in terms of consequence operator Φ applied to two sets of statements:
T - a set of premises, the subject of deductive closure, and
E - a set of assumptions for verification of provability/non-provability assertions, e.g., for verifica-

tion of 6` ϕ.
The operator Φ is monotonic with respect to T (if T ⊆ T ′ then Φ(T,E) ⊆ Φ(T ′, E)), which feature

allows one to avoid circularity, but not necessarily monotonic with respect to E.
Set E is called a deductive closure of T if, and only if, in addition to containing classical (e.g.,

propositional, modal, etc.) consequences of T and, perhaps, satisfying some other constrains, it is
a solution of the fixed-point equation (1). Although such a set obeys all the nonmonotonic rules of
inference of the system, not necessarily every set closed under those rules will form a solution of the
equation. In particular, all the elements of a solution set E are supported in that they are either mono-
tonically derivable from T or follow from E by means of the prescribed (usually, nonmonotonic) rules
of inference. (Note that deriving ϕ from ϕ, an obviously valid inference, is generally considered not
nonmonotonic.) Hence, the notion of supportedness may be viewed as a generalization of provability.
As a result, the fixed-point style definition of the deductive closure does not allow for inferences

that would actually remedy the very lack of information the nonmonotonic rules were introduced to
deal with in the first place. For example, intuitively straightforward nonmonotonic rule

6` ϕ |6` ¬ϕ
ϕ

(2)

(meaning: if ϕ is independent from what has been proved so far then infer ϕ, by default) cannot
produce from T = 0 any solutions E of the fixed-point equation (although the set Cn(ϕ) is closed
under both rule (2) and propositional consequence) because if ϕ ∈ E then there is no support for ϕ
in E, at least as far as (2) is concerned3; otherwise (2) is obviously violated.
To its all natural appeal (for a logician), such a definition introduces two major complications.

Firstly, the fixed-point equation (1), as opposed to classical definition of deductive closure via the
concept of proof, may provide no clue how to compute its solution. Secondly, the equation may have
more than one solution, which - as a matter of fact - increases the expressive power of the logic in
question, or no solutions at all, which creates obvious problems of ontological nature. Moreover, being
an implicit definition, it may render the explicit meaning of the deductive properties of the system,
as well as the actual semantics of its language, unclear.

Autoepistemic logic, introduced by Moore in [Moo85] incorporates axioms and rules of inference
expressed in a language LK of modal logic S5 (whose axioms and rules of inference are listed in
Section 3). In Moore’s formalization (according to its characterization in [Suc00b]), autoepistemic
logic involves two sets: T (the subject of closure) and E (the context), and fixed-point equation (1).
In addition to axioms and rules of S5, it admits the following nonmonotonic rule of inference, which

2Adjective “provable” and phrase “known to be true” are synonymous in this context.
3In this case, ϕ 6∈ Φ(0, E) because ` ϕ, so (2) is not applicable and ϕ cannot be nonmonotonically derived from E.



I refer to as anti-necessitation:
6` ϕ
¬Kϕ

(3)

(some authors use symbol 2 instead of K) whose meaning is formally described by:
ϕ 6∈ E

¬Kϕ ∈ Φ(T,E) . (4)

The necessitation rule of S5
ϕ

Kϕ
(5)

is interpreted similarly to anti-necessitation, that is by
ϕ ∈ E

Kϕ ∈ Φ(T,E) . (6)

The operator Φ(T,E) of deductive closure of T under necessitation (5) and anti-necessitation (3)
relative to E is defined as the closure of T under (4), (6), and propositional consequence. Set E is
called an expansion (a nonmonotonic deductive closure, that is) of T iff it satisfies the fixed-point
equation (1). As a result, E is supported and stable, the latter attribute meaning that it satisfies the
so called stability conditions:

ϕ ∈ E iff Kϕ ∈ E iff ¬Kϕ 6∈ E. (7)
Example 1.1. Every theory T without occurrences of modal operator K has exactly one expan-

sion: the only set E(T ) closed under the rule
ϕ 6∈ E(T )
¬Kϕ ∈ E(T )

and S5-consequence whose modal-free part E0(T ) coincides with T . Theory T = {Kp}, paradoxically,
has no expansions, while theory T = {¬Kp ⊃ q,¬Kq ⊃ p} has two expansions: E({p}) and E({q}).
Because S5 may be characterized by:

T `S5 ϕ iff ϕ belongs to every stable theory E that contains T,
Moore’s autoepistemic logic is a strengthening of S5. In particular, the stability conditions (7) fix the
meaning of operator K of knowledge as nonmonotonic and somewhat self-referential provability, so
that in the semantics of LK defined by expansions, “Kϕ” means “ϕ is supported”.

An alternative approach to formalization of nonmonotonic logic that is free of the paradoxical
properties indicated above begins with restricting semantics of its language L to selected models for
L by means of certain context-sensitive assumption, as, e.g., minimality assumption. In this approach,
a partial order < is superimposed on the class of semantical structures for L. It allows for formulation
of the <-minimality assumption: a structure M is a <-minimal model of T iff it is a model of T and
for no model N of T , N <M holds. This, in turn, yields a definition of <-minimal entailment `<:

T `< ϕ iff ϕ is true in every <-minimal model of T .
Examples of < in the class of first-order structures contain those defined by proper inclusions
( between models’ respective relations, and by proper inclusions ( between models’ universes, as
well as their variants and combinations.

In this paper, I will pursue that latter approach.
Other general schemes of nonmonotonic deduction are briefly discussed in Section 11.

2. AUTOEPISTEMIC LOGIC
Since its introduction by Moore in [Moo85], autoepistemic logic has found numerous applications
in the areas of research which deal with formally represented knowledge. They include: the theory
of knowledge, automated reasoning, and logic programming. Autoepistemic logic is based upon the
concept of introspection, that is, the awareness of one’s own knowledge and ignorance to the extent
which would allow for self-assessment of what one actually knows and what one doesn’t. The lan-
guage LK of autoepistemic logic consists of a propositional language L, and, in addition to constants



> (true), ⊥ (false), propositional variables p1, p2, p3, ..., logical connectives ∨,∧,¬,⊃, etc., contains
a modal operator K for expressing facts that are known to the knower in question. Because I am
mainly concerned with the modal properties of LK , I will follow the general trend and do not dwell on
the nature of propositional variables of LK , e.g. whether or not they possess any internal structure,
or how they are possibly related to one another, although since Henkin discovered that the predicate
calculus is reducible to propositional logic, this might be a very interesting topic to pursue.

Having stated the above as my point of departure, I identify a knowledge base with a set T of
sentences of LK , and yes-or-no queries to T with sentences of LK . The knowledge base T constitutes
a formal description of one’s knowledge. Its intensional meaning is “T is all that is known” (on a
certain subject or a group of subjects), which I will refer to as the “only knowing” interpretation.

Modal-free sentences of T , the members of L, represent the objective knowledge, the so called facts.
Operator K allows for expressing the self-assessing statements or queries, e.g., K(p1 ∨ p2) has the
meaning of “it is known that p1 or p2”, Kp1 ∨Kp2 means “it is known that p1 or it is known that
p2”, and ¬Kp1 is interpreted as “it is not known that p1”.
Given a knowledge base T , the central question which remains to be answered is this:

“What is the proper answer to a yes-or-no query ϕ addressed to T?”

In this paper I reduce it to:

“Is ϕ an autoepistemic consequence of T?”

In light of such a settlement, the autoepistemic consequence operation CnAE , which assigns to each
T the set CnAE(T ) of all autoepistemic consequences of T , becomes a key element in a system of
knowledge representation. Its characterization by purely proof-theoretic means in the usual form of
a completeness theorem is the main goal of my investigation.

The nonmonotonicity of autoepistemic logic, “in which” - as McDermott and Doyle put it in [MD80]
- “the introduction of new axioms can invalidate old theorems,” makes the said goal a challenging
problem. In particular, a natural candidate for characterization of CnAE , Kripke’s modal system
S5, cannot be fully adequate because it is monotonic. Indeed, ¬Kp2 should belong to autoepistemic
consequences of {p1} (since one doesn’t know p2 if p1 is all one knows), although {p1} does not prove
¬Kp2 within modal system S5.
Moore’s original attempt of defining autoepistemic consequences of a set of sentences in terms of

the intersection of its so called expansions yielded a nonmonotonic operation CnExp, which captured
properly certain cases of T (e.g. the modal-free case), but revealed a pathological behavior in some
other cases. For example, autoepistemic theory {Kp1∨Kp2} has no expansions in the sense of [Moo85].
Therefore, depending on interpretation of this fact, {Kp1 ∨ Kp2} proves everything (including the
false sentence ⊥) or nothing (not even Kp1∨Kp2 itself). This counterexample shows that CnExp can
hardly be recognized as admissible (“the”, if you will) autoepistemic consequence operation because
it does not preserve consistency.

The system I present here constitutes a nonmonotonic strengthening of logic S5. Unlike other
attempts to formalize autoepistemic reasoning, this one does not depend on any fixed-point equation
and is based solely on the concepts of minimal expansion and maximal Kripke structure introduced in
[HM85], instead. These concepts allow for adequate and free of paradoxes and unnecessary convolution
semantic definition of CnAE : ϕ is an autoepistemic consequence of T iff ϕ is true in all maximal Kripke
models of T , or equivalently, iff ϕ belongs to all minimal expansions of T . In this paper I characterize
CnAE in terms of minimal-knowledge assumption MKA formulated as follows:

A sentence ϕ of LK is derivable from T under MKA if and only if ϕ does not add modally
positive S5-consequences to T .

Because modally positive sentences of LK express the knowledge (as opposed to ignorance), MKA
articulates, in fact, the “only knowing” interpretation of T in terms of S5-provability.

The main result of this paper has the form of a completeness theorem which says that for every
set T of sentences of LK ,

CnAE(T ) = MKA(T ).



Other presented results, although some of them interesting in themselves, are merely tools used in
the proof of the above mentioned characterization. Some of them are already known in the literature.
However, for the sake of reader’s convenience, I supply him with their proofs when appropriate.

3. STABLE THEORIES AND INTROSPECTIVE KNOWERS
Following [Moo85], I adopt the concept of fully rational and introspective knower (called agent in
op. cit.) in order to provide the language LK with its autoepistemic semantics. To that end, Moore
resorted, albeit implicitly, to the fixed-point equation (1) constrained by (4) and (6). Below, I rein-
troduce that semantics, using More’s presentation, which is going to be the point of departure for my
study of autoepistemic logic. However, later I will drop any references to (1) and its solutions E.

Every knower possesses certain knowledge which is completely characterized by a set E of sentences
of LK , that is, the knower knows that a sentence is true if and only if it belongs to E. Modal-free
elements of E constitute knower’s objective knowledge EObj . The modal operator K is understood
as an abbreviation of “the knower knows that ...”, so that the knower’s knowledge can also reflect his
awareness of what he actually knows. Rationality of the knower is represented by the requirement
that E is closed under the propositional consequence, while his introspectiveness is expressed by two
conditions: ϕ ∈ E implies Kϕ ∈ E, and ϕ 6∈ E implies ¬Kϕ ∈ E. All three of them constitute the
so called stability conditions, usually attributed to Stalnaker. The knower is a model for a knowledge
base T if, perhaps in addition to other requirements, all sentences of T are known to him.

It is convenient to distinguish consistent stable theories, i.e. the ones which do not contain both ϕ
and ¬ϕ. Consistent stable theory E may be equivalently defined by the following three conditions:
Sta 1.E is closed under the propositional consequence.
Sta 2. ϕ ∈ E iff Kϕ ∈ E.
Sta 3. ϕ 6∈ E iff ¬Kϕ ∈ E.

Because there is only one inconsistent theory closed under the propositional consequence, namely the
one which contains all the sentences of LK , one can define the stability as inconsistency or satisfiability
of Sta 1 ... Sta 3 (it is an easy exercise to prove that this definition is equivalent to the Stalnaker’s
one). Let us note that the or in the above formulation is exclusive one since the inconsistent theory
closed under the propositional consequence does not satisfy Sta 3.

The adoption of fully rational and introspective knower as a model for autoepistemic language LK

imposes a constrain on interpretation of phrase “only knowing”. In fact, any fully rational knower
who knows T must also know all the logical consequences of T . Therefore, the adjective “only” in
“only knowing” should not be understood literally. On the other hand, as a result of knower’s full
introspectiveness this adjective should not be understood too inclusively, either. For instance, knowing
only {Kp1 ∨ Kp2} is not the same a knowing all the logical consequences of {Kp1 ∨ Kp2}. To the
contrary, it means knowing p1 but not knowing p2, or vice versa. This is more than than only knowing
p1 ∨ p2.

As I indicated Section , my goal is to characterize, by purely proof-theoretic means, the autoepis-
temic consequence operation CnAE . Before I do that I have to spell out a scheme of semantic definition
of CnAE :

ϕ ∈ CnAE(T ) iff each knower who only knows T also knows ϕ.
Obviously, the condition on the right hand side of the above scheme is not the same as “each knower
who knows T also knows ϕ” because the latter does not capture the “only knowing” interpretation
of T . Indeed, the latter condition would lead to the following consequence operation CnSta:

CnSta(T ) =
⋂
{E | T ⊆ E and E is stable}. (8)

It turns out that CnSta coincides with monotonic consequence operation CnS5, and therefore cannot
coincide with nonmonotonic CnAE . In the next section I will formulate a satisfactory definition of
CnAE . Here I present an argument that CnSta coincides with CnS5.
CnS5(T ) is defined for every T ⊆ LK as the least set satisfying the following postulates.

Axioms. For every ϕ,ψ ∈ LK ,
T. Kϕ ⊃ ϕ
5. ¬Kϕ ⊃ K¬Kϕ
K. K(ϕ ⊃ ψ) ⊃ (Kϕ ⊃ Kψ)



are in CnS5(T ). Moreover, for every propositional tautology τ ∈ LK ,

Pl. τ

is in CnS5(T ).
Rules of inference. For every ϕ,ψ ∈ LK ,

MP. if ϕ ∈ CnS5(T ) and ϕ ⊃ ψ ∈ CnS5(T ) then ψ ∈ CnS5(T ),
RN. if ϕ ∈ CnS5(T ) then Kϕ ∈ CnS5(T ).

(Cf. [Che80] for details on system S5 with T = 0.)
For example, p2 ⊃ Kp1 ∈ CnS5({p1}), because by RN Kp1 ∈ CnS5({p1}), Kp1 ⊃ (p2 ⊃ Kp1) is

a propositional tautology in LK , and p2 ⊃ Kp1 ∈ CnS5({p1}) follows from Kp1 ∈ CnS5({p1}) and
Kp1 ⊃ (p2 ⊃ Kp1) ∈ CnS5({p1}) by application of MP.
Operation CnS5 is monotonic, that is, if T ⊆ T ′ then CnS5(T ) ⊆ CnS5(T ′). This fact is a direct

result of the inclusive character of its both rules of inference.
The completeness theorem of modal system S5 (cf. [Che80]) yields the following straightforward,

nevertheless useful consequence known to autoepistemic logicians from some time (an early proof was
published in [Kon88]; see also [MaT91] p. 594).

Theorem 3.1. For every set T of sentences of LK ,

CnS5(T ) = CnSta(T ).

Proof postponed to the end of Section 4. 2

We have already noted that CnS5 is monotonic. Therefore, Theorem 3.1 affirms that CnSta is
monotonic too. Although it can be easily shown that all the axioms of S5 are valid in autoepistemic
semantics of LK , and that its rules of inference never derive invalid conclusions from valid premises,
the monotonicity of CnS5 and CnSta eliminates them from consideration as candidates for complete
characterization of CnAE .

4. UNIVERSAL MODELS FOR STABLE THEORIES
In this section I define a special case of Kripke structures which will be subsequently used to define
the autoepistemic semantics for language LK .
A universal Kripke structure for LK is a Kripke structure of the form

M = 〈M,P 〉,

where

—M is a set of possible worlds of M, and
— P = 〈P1, P2, ...〉 is an infinite sequence of subsets of M .

The satisfaction relation |=, with M |= ϕ[m] meaning: M satisfies ϕ in a possible world m ∈ M , is
defined by induction as follows.

Definition 4.1.

(1 ) M 6|= ⊥[m]; M |= >[m]
(2 ) M |= pi[m] iff m ∈ Pi

(3 ) M |= ¬ϕ[m] iff M 6|= ϕ[m]
(4 ) M |= (ϕ ∨ ψ)[m] iff M |= ϕ[m] or M |= ψ[m]
(5 ) M |= Kϕ[m] iff for each n ∈M , M |= ϕ[n]

(other connectives are treated as appropriate abbreviations). Moreover,

M |= ϕ iff for each m ∈M,M |= ϕ[m]

and
M |= T iff for each ϕ ∈ T,M |= ϕ.

2



In particular, M |= Kϕ iff M |= ϕ, and M |= ¬Kϕ iff M 6|= ϕ.
The semantics for LK defined above is completely characterized by the axioms and rules of inference

of modal system S5 introduced in Section 3.
Theorem 4.2. For every set T of sentences of LK , and every sentence ϕ of LK , ϕ ∈ CnS5(T )

iff for each universal Kripke structure M with M |= T , M |= ϕ holds.
Proof. A direct proof of this fact may be found in in [Che80], thm. 5.15. Here I present a simple

argument pointed out in [MaT91]. Clearly, all the axioms T, 5, K and Pl are valid in any universal
Kripke structure, and rules MP and RN lead from true sentences to true sentences (proof by in-
spection). This gives the soundness. Proof of completeness requires a trick. Every standard Kripke
structure for S5 (i.e. one of the form M = 〈M,R,P 〉, where R is an equivalence relation in M) may
be split onto the union of universal Kripke structures of the form

M(i) = 〈M (i),M (i) ×M (i), P (i)〉, i ∈ I,

where M (i)’s are the equivalence classes of R, and P (i)
j is defined as Pj ∩M (i), for each j = 1, 2, ....

It is a matter of routine induction to show that for every m ∈ M (i), and every sentence ϕ of LK ,
M |= ϕ[m] iff M(i) |= ϕ[m]. Consequently, M |= ϕ holds iff for each i ∈ I, M(i) |= ϕ. Therefore, if
a sentence ϕ is true in all universal Kripke models of T then it is true in all Kripke models of T ,
and hence, by completeness of modal logic S5 with respect to standard Kripke semantics (cf. [Che80],
thm. 5.14), provable by means of S5. 2

Universal Kripke structures constitute a semantic counterpart of consistent stable theories in the
following sense.
Let Th(M) = {ϕ ∈ LK | M |= ϕ}. It is a matter of straightforward verification to show that for

every universal Kripke structure M, Th(M) is stable. Obviously, Th(M) is consistent as well. The
converse is also true: if E is consistent and stable then there is a universal Kripke structure M with
E = Th(M). Indeed, let M be the set of all propositional models of EObj , and for every propositional
variable pi, let Pi be the set of all those elements ofM which satisfy pi. Put M = 〈M, 〈P1, P2, ...〉〉. We
have EObj = (Th(M))Obj . Routine induction shows that E = (Th(M)). Thus the stable consistent
theories are exactly the theories of universal Kripke structures.

Now, the proof of Theorem 3.1 becomes an easy exercise. By Theorem 4.2, ϕ ∈ CnS5(T ) iff ϕ is
true in every universal Kripke model of T , that is, iff for every universal Kripke structure M with
T ⊆ Th(M), ϕ ∈ Th(M) holds. By the previous observation this means that ϕ belongs to all stable
theories which contain T , that is, ϕ ∈ CnSta(T ).

5. MAXIMAL MODELS FOR MINIMAL EXPANSIONS
The adoption of the concept of fully rational introspective knower whose knowledge is faithfully
expressed by a stable theory E as a model for a knowledge base represented by a set of sentences of
LK restricts the area of consideration of candidates for operation CnAE to those which satisfy the
following equation:

Cn?(T ) =
⋂
{E | T ⊆ E and E is stable, and ...} (9)

where “...” represents some extra requirement imposed on E. If “...” is interpreted as the empty require-
ment then equation (9) defines the operation CnSta, which coincides with monotonic consequence
operation CnS5 of system S5, and therefore is not an adequate characterization of CnAE . If “...” is
understood as “E satisfies fixed-point equation (16) of Section 10” then (9) defines CnExp. As we
have seen, operation CnExp, although nonmonotonic, does not seem appropriate for the formalization
of CnAE , either. So, we have to look for another interpretation of “...”.

I based my choice on the concept of minimal expansion introduced in [HM85]. It comes from an
observation that for purely objective consistent T , the inductive definition of a unique stable theory
E which contains T captured properly the introspectiveness of CnAE .

In the simplest case when T contains exclusively sentences of L (i.e. modal-free sentences),
constructing CnAE(T ) is a matter of induction: put Cn

(0)
AE(T ) = Cn(T ); Cn

(n+1)
AE (T ) =

Cn(K(Cn(n)
AE(T )) ∪ ¬K(L(n)

K \ Cn(n)
AE(T ))); and CnAE(T ) =

⋃
j∈ω Cn

(j)
AE(T ); where Cn is the op-

eration of propositional consequence, KΦ and ¬KΦ abbreviate {Kϕ | ϕ ∈ Φ} and {¬Kϕ | ϕ ∈ Φ},



respectively, and L(n)
K is the set of sentences of LK whose nesting depth of operator K is not greater

than n (for instance, ¬K(Kp1 ∨ p2) ∈ L(2)
K \ L(1)

K ). In particular, for every ψ ∈ L(n)
K , the following

negation clause holds:

if ψ 6∈ Cn(n)
AE(T ) then ¬Kψ ∈ Cn(n+1)

AE (T ). (10)
Quite obviously, clause (10) causes the defined above fragment of CnAE to be nonmonotonic.
Indeed, if p1 and p2 are propositional variables then ¬Kp2 ∈ CnAE({p1}), but obviously
¬Kp2 6∈ CnAE({p1, p2}).

In the case of T containing arbitrary sentences of LK , determining the operation CnAE turned out
to be a considerably more difficult task (although still relatively easy for certain special cases, as e.g.,
honest theories investigated in [HM85]).
If we look closer at that inductive definition then we figure out that an instance of its negation

clause (10): if ψ 6∈ Cn(0)
AE(T ) then ¬Kψ ∈ Cn(1)

AE(T ), which is responsible for the uniqueness of E,
reveals our real intention about the meaning of the operator K: we want to maximize the set of those
sentences ϕ of L for which ¬Kϕ is true. (McDermott and Doyle had, most likely, a similar desire
when they proposed in [MD80] their famous nonmonotonic rule of inference). Now, the choice for “...”
in equation (9) becomes obvious: we fill the dots with “the objective part EObj of E is minimal”. This
gives rise to the following definition of [HM85].

Definition 5.1. A stable theory E is called a minimal expansion of T if and only if:
(1 ) T ⊆ E, and
(2 ) for every stable theory E′ with T ⊆ E′, if E′ v E then E′ = E,
where the relation v between stable theories is defined by:

E′ v E iff E′Obj ⊆ EObj. 2

The relation v compares stable theories with respect to the contents of their objective parts, i.e.
E′ v E means that E′ contains no more objective knowledge than E. Thus a minimal expansion of
T is a stable expansion of T with possibly minimal content of objective knowledge.
The concept of minimal expansion translates (9) into the following definition of the autoepistemic

consequence operation CnAE :

CnAE(T ) =
⋂
{E | E is a minimal expansion of T}. (11)

It turns out that minimal expansions have their semantical counterparts within the class of universal
Kripke structures for LK , namely: the maximal models introduced in [HM85]. They are defined as
follows.

Let for any two universal Kripke structures M and M′ M ⊆ M′ mean: M ⊆ M ′ and for every
i = 1, 2, ..., Pi = P ′i ∩M .

Definition 5.2. [HM85] The relation � between universal Kripke structures is defined by:
M � N iff M ⊆ N and there exists n ∈ N \M such that for every m ∈ M there is a (modal-free)
sentence of L with M |= ϕ[m] and N |= ¬ϕ[n].
M is a maximal model of T iff M is a universal Kripke structure for LK with M |= T , such that for
no M′ �M, M′ |= T . 2

I call the semantics of LK restricted to maximal models a maximal semantics. Maximal semantics
defines its consequence operation Cnmax by:

Cnmax(T ) = {ϕ ∈ LK | for every maximal model M of T, M |= ϕ}.
It is a matter of straightforward inspection to figure out that for any two universal Kripke structures

M and M′ with M�M′, and every modal-free sentence ϕ of LK , if Kϕ is true in M′ then it is also
true in M. Therefore, for any two stable theories E and E′, E v E′ iff there exist universal Kripke
structures M and M′ with M �M′, such that E = Th(M) and E′ = Th(M′). This means that the
minimal expansions of T are exactly the theories of maximal models of T .
The above observation yields the following fact (due to [HM85]) which articulates the completeness

of operation CnAE with respect to maximal semantics.



Theorem 5.3. For every set T of sentences of LK ,

Cnmax(T ) = CnAE(T ).

2

It should be noted that although axioms of modal system S5 were not involved in the definition of
CnAE , Theorem 5.3 implies that for every T , CnS5(T ) ⊆ CnAE(T ), that is, CnAE is closed under
the S5-consequence (because Cnmax obviously is). I will demonstrate in Section 8 that CnS5 is a
maximal monotonic consequence operation with this property, and therefore may be considered the
monotonic fragment of CnAE .

6. NORMAL AND CLAUSAL FORMS
In this technical section, I prove certain normal and clausal form lemmas which state that Boolean
combinations of sentences of the form Kϕ, where ϕ ∈ L, called here K1-sentences, possess the
expressive power of the entire language LK . This property is a necessary prerequisite for Section 7.
To that end I introduce two translations: hx, from LK into a first-order language Lx with one variable
x, and fx, from the class of first-order structures for Lx onto a certain class of Kripke structures.
They are defined as follows.

Definition 6.1. Let Lx be a first-order language with one variable x and infinitely many unary
predicate symbols Pi, i = 1, 2, .... Mapping fx from the class of first-order structures for Lx onto the
class of universal Kripke structures for LK is defined by

fx(M) = 〈M, 〈{m ∈M |M
P C

|= Pi(x)[m]} | i = 1, 2, ...〉〉

where
P C

|= denotes the first-order satisfaction relation, and M is the domain of the first-order structure
M for Lx.
Mapping hx from language LK onto language Lx is defined by induction:

(1 ) hx(⊥) = ⊥, hx(>) = >
(2 ) hx(pi) = Pi(x)
(3 ) hx(¬ϕ) = ¬hx(ϕ)
(4 ) hx(ϕ ∨ ψ) = hx(ϕ) ∨ hx(ψ)
(5 ) hx(Kϕ) = ∀xhx(ϕ)

(other connectives are treated as appropriate abbreviations). 2

Mappings fx and hx are “1-1” and “onto”, therefore, the inverse functions f−1
x and h−1

x are un-
ambiguously determined. All four of them allow us to “translate” certain well-known properties of
first-order logic back to LK , using the following theorem.

Theorem 6.2. Let ϕ be a sentence of LK , M a first-order structure for Lx, and m ∈M .

fx(M) |= ϕ[m] iff M
P C

|= hx(ϕ)[m].

Proof. If ϕ is a propositional variable (say, pi) then fx(M) |= pi[m] iff M
P C

|= Pi(x)[m] iff

M
P C

|= hx(pi)[m]. Cases of ⊥ and > are trivial. The rest of the proof is a routine induction. 2

In particular, the above theorem has two useful consequences.

Corollary 6.3. For every set T of sentences of LK , and for every sentence ϕ of LK ,

ϕ ∈ CnS5(T ) iff hx(ϕ) ∈ CnP C(hx(T )),

where CnP C denotes the first-order consequence operation in Lx.

Proof. By completeness of S5, ϕ ∈ CnS5(T ) iff ϕ is true in each universal Kripke model of T , which
by Theorem 6.2 yields equivalently: hx(ϕ) is true in each first-order model of hx(T ). Completeness
of first-order propositional calculus completes the proof. 2



Corollary 6.4. If ϕ is a modally closed sentence of LK (i.e. every occurrence of propositional
variable in ϕ belongs to the scope of operator K in ϕ) then

ϕ ≡ Kϕ
is a theorem of S5.

Proof. If ϕ is modally closed then hx(ϕ) is a sentence of Lx. Therefore, M
P C

|= hx(ϕ)[m] iff

M
P C

|= ∀xhx(ϕ)[m]. Applying Theorem 6.2 we obtain: fx(M) |= ϕ[m] iff fx(M) |= Kϕ[m], i.e.
fx(M) |= (ϕ ≡ Kϕ)[m]. Because fx is “onto”, all universal Kripke structures are of the form fx(M).
Hence ϕ ≡ Kϕ is valid. 2

I need these results to prove the S5-reducibility of the sentences of LK to normal and clausal forms.
Normal Form Lemma 6.5. For every sentence ϕ of LK there exists a K1-sentence ψ of LK

with
CnS5(ϕ) = CnS5(ψ).

Proof. Let ϕ be a sentence of LK . Because hx(ϕ) is a formula of Lx, we have CnP C(hx(ϕ)) =
CnP C(∀xhx(ϕ)). Because Lx has only one variable, there is a sentence χ of Lx such that every
occurrence of its only variable x belongs to the scope of exactly one quantifier ∀ (we assume that ∃ is an
abbreviation for ¬∀¬), with CnP C(χ) = CnP C(∀xhx(ϕ)). By corollary 6.3 we obtain CnS5(h−1

x (χ)) =
CnS5(ϕ). Observation that h−1

x (χ) is a K1-sentence completes the proof. 2

Clausal Form Lemma 6.6. For every set T of sentences of LK there exists a set U of sentences
of the form

Kϕ1 ∨ ... ∨Kϕn ∨ ¬Kψ1 ∨ ... ∨ ¬Kψm,

where all ϕi’s and ψj’s are modal-free, with
CnS5(T ) = CnS5(U).

Proof. By Theorem 6.5 every sentence ϕ of LK is S5-equivalent to a K1-sentence of LK , and
therefore is S5-equivalent to a K1-sentence in conjunctive normal form with respect to atoms of the
form Kψ, where ψ is modal-free. Let ϑ1 ∧ ...∧ ϑn be such a K1-sentence in conjunctive normal form.
Let κ(ϕ) = {ϑ1, ..., ϑn}, and let U =

⋃
{κ(ϕ) | ϕ ∈ T}. Observation that CnS5(T ) = CnS5(U)

completes the proof. 2

Other normal forms of autoepistemic sentences were investigated in [MaT91].
The latter result seems particularly interesting from the point of view of uniform representation of

autoepistemic theories in a form of sets of clauses. This form of representation allows for transfer of
methods and results of logic programming (cf. [Apt90]) into autoepistemic logic.

7. PRESERVATION PROPERTIES
In this section, I interpret in modal language LK two classic theorems which turned out exceptionally
useful in study of minimal model semantics of deductive data bases and logic programs. For this
purpose, I map K1-sentences of LK into a first-order language LH . This mapping allows me to reflect
expressible properties of structures for LH into the language LK and its semantics. Theorems 6.5
and 6.6 guarantee that translating just K1-sentences is enough to cover entire LK . Quite naturally,
part of terminology of this section comes from theory of minimal models (cf. [McC80; Min82; BS84;
Suc90]).

Language LH is defined as one without =, with function symbols, constants, and a unary predicate
R, whose terms are the modal-free sentences of LK (formally, we must include ⊥, > and propositional
variables of LK as constants of LH , and propositional connectives of the modal-free fragment L of
LK as function symbols of LH). Herbrand structures for LH are defined as first-order structures of
the form

M = 〈L,R〉,
where L is the domain of M and consists of all constant terms of LH (i.e. of all modal-free sentences
of LK) and R is a subset of L. As it is usually the case with Herbrand models, all constant terms
of LH are interpreted in M by themselves, e.g. term p3 ∨ ⊥ has always the value “p3 ∨ ⊥” in M.



Satisfaction relation
P C

|= between the Herbrand structures and formulas of LH is defined in a usual
way (see [Bar78b] for details).

Partial ordering relation ≤ between Herbrand structures is defined by
M ≤M′ iff R ⊆ R′.

If T is a set of sentences of LH then a Herbrand structure M for LH is called a minimal model of T
iff M

P C

|= T , and for every Herbrand structure N with N
P C

|= T , N ≤M implies N = M.

A set T of sentences of LH is minimally modelable iff for every Herbrand structure M with M
P C

|= T ,
there is a minimal model N of T with N ≤M.
I distinguish two special subsets of sentences of LH : the set of all quantifier-free sentences of LH ,

denoted by QF , and the set of all positive (i.e. negation-free) sentences of LH , denoted by Pos. Let us
recall here that I treat all other connectives than ∨,∧,¬ as appropriate abbreviations. In particular,
ϕ ⊃ ψ is an abbreviation for ¬ϕ ∨ ψ, therefore is not a positive sentence. Moreover, for any two
sets T, W of sentences of LH , we use TW as an abbreviation of CnP C(T ) ∩W , where CnP C is the
first-order consequence operation. For instance, TP os∩QF denotes the set of all positive, quantifier-free
consequences of T . Similarly, for sets of sentences of LK , TW abbreviates CnS5(T ) ∩W .

Here are the results I want to translate from LH to LK . The first one is an immediate corollary of
a stronger theorem due to Bossu and Siegel ([BS84]).

Lemma 7.1. Every set of quantifier-free sentences of LH is minimally modelable. 2

The second result, whose stronger form is due to Lyndon ([Lyn59]), relates ≤ and the truthfulness
of the quantifier-free positive sentences.

Lyndon Theorem 7.2. Let M be a Herbrand structure and T be a set of quantifier-free sentences
of LH .

M
P C

|= TP os∩QF iff there exists N ≤M with N
P C

|= T

Proof. (⇒). If N ≤ M and N
P C

|= T then by [Lyn59], thm 5, M
P C

|= TP os, in particular,

M
P C

|= TP os∩QF .

(⇐). Let M
P C

|= TP os∩QF . Because M is a Herbrand structure and T is quantifier-free, M
P C

|= TP os.

Applying [Lyn59], thm 5 again, there are A �M and B ≤ A with B
P C

|= T . Because T is a universal

theory, by Łoś - Tarski theorem ([Kei78], thm 3.11), B∩M
P C

|= T . B ≤ A yields B∩M ≤ A∩M = M.

Letting N = B ∩M gives N ≤M and N
P C

|= T . 2

Positive sentences were instrumental in formulations and proofs of several completeness theorems
in first-order minimal model theory (cf. [Suc93]). To translate Theorem 7.2 from LH back to LK we
need to distinguish their counterparts in LK , namely modally positive sentences, which we define as
the ones without occurrences of operator K in a scope of negation. For instance, K¬p1 is a modally
positive sentence, while ¬Kp1 is not. I denote their class by mPos.
The following mapping yields the previously mentioned translation.
Definition 7.3. The mapping H from the set of K1 sentences of LK onto set QF of sentences

of LH is defined inductively:
(1 ) H(Kϕ) = R(ϕ), where ϕ is modal-free
(2 ) H(¬ϕ) = ¬H(ϕ)
(3 ) H(ϕ ∨ ψ) = H(ϕ) ∨H(ψ)
(4 ) H(ϕ ∧ ψ) = H(ϕ) ∧H(ψ)
(other connectives are treated as appropriate abbreviations). For any set T of sentences of LK ,

H(T ) = {H(ϕ) | ϕ ∈ T}.
2



Here are some basic properties of mapping H.

Lemma 7.4.

(1 ) H is “1-1” and “onto” QF .
(2 ) H(mPos) = Pos ∩QF .
(3 ) For every K1-sentence ϕ, H(ϕ) is a propositional tautology iff ϕ is a propositional tautology.
(4 ) For every sequence ϕ, ..., ψ of K1-sentences, H(ϕ), ...,H(ψ) is a propositional proof of H(ψ) iff

ϕ, ..., ψ is a propositional proof of ψ.
(5 ) For every K1-sentence ϕ and every set T of K1-sentences of LK ,

H(ϕ) ∈ Cn(H(T )) iff ϕ ∈ Cn(T ),
where Cn denotes the propositional consequence operation.

Proof.

(1) Routine induction.
(2) H(mPos) ⊆ Pos ∩QF is obvious.

H(mPos) ⊇ Pos∩QF follows from 1 by induction based upon the inductive definition of positive
quantifier-free formulas of LH .

(3) Propositional consequence operation treats as atoms bothR(ϕ)’s andKϕ’s, where ϕ is modal-free.
By virtue of 1, if v is a propositional truth-assignment on QF then v ◦H defined by (v ◦H)(ϕ) =
v(H(ϕ)) is a propositional truth-assignment on K1, and vice versa, if w is a propositional truth-
assignment on K1 then w ◦ H−1 is a propositional truth-assignment on QF . Hence, ϕ is true
under every propositional truth-assignment iff H(ϕ) is.

(4) Follows from 3.
(5) Follows from 4.

2

Mapping H maps the relation ≤ onto v, the next lemma states.

Lemma 7.5. For every stable theories E, E′ in LK , and every Herbrand structures M, M′ for

LH with M
P C

|= H(EK1) and M′
P C

|= H(E′K1
),

M ≤M′ iff E v E′.

Proof. (⇒). Assume M ≤ M′ and E 6v E′. Let ϕ ∈ EObj \ E′Obj . We have: ϕ ∈ EObj then

Kϕ ∈ EK1 thenR(ϕ) ∈ H(EK1) thenM
P C

|= R(ϕ) thenM′
P C

|= R(ϕ). Also, ϕ 6∈ E′Obj then ¬Kϕ ∈ EK1

then ¬R(ϕ) ∈ H(E′K1
) then M′

P C

|= ¬R(ϕ); a contradiction.

(⇐). Assume M 6≤M′. Let ϕ be in L and satisfy M
P C

|= R(ϕ) and M′ 6
P C

|= R(ϕ). Hence M 6
P C

|= ¬R(ϕ)

and M′ 6
P C

|= R(ϕ), therefore M 6
P C

|= H(¬Kϕ) and M′ 6
P C

|= H(Kϕ), therefore H(¬Kϕ) 6∈ H(EK1) and
H(Kϕ) 6∈ H(E′K1), therefore ¬Kϕ 6∈ EK1 and Kϕ 6∈ E′K1, therefore (by stability of E and E′, and
by modal-freedom of ϕ) Kϕ ∈ EK1 and ¬Kϕ ∈ E′K1, therefore ϕ ∈ E and ϕ 6∈ E′. Thus E 6v E′. 2

To accomplish the goal of this section I need the following technical lemmas.

Lemma 7.6. For every set T of sentences of LK ,

H(TK1∩mP os) = H(TK1)P os∩QF .

Proof. H(TK1 ∩ mPos) = H(TK1) ∩ H(mPos) = (by Lemma 7.4.2) H(TK1) ∩ Pos ∩ QF ⊇
Cn(H(TK1) ∩ Pos ∩ QF = H(TK1)P os∩QF . Therefore, it suffices to prove that H(TK1)P os∩QF ⊆
H(TK1∩mPos). Let ϕ ∈ H(TK1)P os∩QF , i.e. ϕ ∈ Cn(H(TK1) and ϕ ∈ Pos∩QF , i.e. (by Lemma 7.4.1,
.2, and .5)H−1(ϕ) ∈ Cn(TK1) andH−1(ϕ) ∈ mPos, i.e.H−1(ϕ) ∈ TK1∩mP os, i.e., ϕ ∈ H(TK1∩mP os).

2

Lemma 7.7. For every set T of K1-sentences and every Herbrand structure M for LH ,

M
P C

|= H(TK1∩mP os) iff there is N ≤M with N
P C

|= H(TK1).



Proof. H(TK1∩mP os) = (by Lemma 7.6) H(TK1)P os∩QF . Application of Theorem 7.2 completes
the proof. 2

Lemma 7.8. For every consistent stable theory E in LK there exists a unique Herbrand structure

M for LH with M
P C

|= H(EK1).

Proof. For every ϕ ∈ L, Kϕ ∈ EK1 or ¬Kϕ ∈ EK1 , i.e., R(ϕ) ∈ H(EK1) or ¬R(ϕ) ∈ H(EK1).
This determines interpretation of R in M, which gives the uniqueness. Because E is consistent, the
above condition guarantees also the existence. 2

Lemma 7.9. For every Herbrand structure M for LH and every set T of sentences of LK , if

M
P C

|= H(TK1) then there is a stable theory E in LK with M
P C

|= H(EK1).

Proof. Let Φ = {ϕ | M
P C

|= R(ϕ)}. Because TK1 is closed under the propositional conse-
quence, a routine induction verifies that Φ is also closed under the propositional consequence. By
[MaT91], Prop 2.5 p. 593, there is a stable theory E with EObj = Φ. A direct inspection shows that

M
P C

|= H(EK1). 2

Now we are ready to translate Theorem 7.2 back to LK .

Preservation Lemma 7.10. For every stable theory E of LK ,

TmP os ⊆ E iff there is stable E′ v E with T ⊆ E′.

Proof. (⇒). TmP os ⊆ E implies TK1∩mP os ⊆ EK1 implies H(TK1∩mP os) ⊆ H(EK1). By

Lemma 7.8, let M be the unique Herbrand model of H(EK1). Of course, M
P C

|= H(TK1∩mP os).

By Lemma 7.7, we get N ≤ M with N
P C

|= H(TK1). By Lemma 7.9, there is a stable theory E′

with N
P C

|= H(E′K1
). Of course, H(TK1) ⊆ H(E′K1

), hence TK1 ⊆ E′K1
. Therefore TK1 ⊆ E′, and by

Theorem 6.6, T ⊆ E′. Lemma 7.5 gives E′ v E.

(⇐). Let T ⊆ E′ v E, N
P C

|= H(E′K1
), and M

P C

|= H(EK1). By Lemma 7.5 we have that N ≤ M.

Moreover, N
P C

|= H(TK1) (because TK1 ⊆ E′K1
). By Lemma 7.7 we get M

P C

|= H(TK1∩mP os), which
means that H(TK1∩mP os) ⊆ H(EK1), or TK1∩mP os ⊆ EK1 , i.e. TmP os ∩ K1 ⊆ E. Application of
Theorem 6.6 yields TmP os ⊆ E. 2

I used the term “Preservation” in the name of Lemma 7.10 because of its following consequence.
I call a set T of sentences of LK upward preserved under v iff for every two stable theories E and

E′ with E v E′, T ⊆ E implies T ⊆ E′.

Corollary 7.11. A set T of sentences of LK is upward preserved under v if T is S5-equivalent
to a set of modally positive formulas of LK .

Proof. (⇐) Implication to the left follows from a routine induction on the length of a modally
positive formula.

(⇒) Let T be upward preserved under v. By Theorem 3.1, it suffices to show that for every stable
theory E, conditions T ⊆ E and TmP os ⊆ E are equivalent. T ⊆ E obviously implies TmP os ⊆ E,
therefore what remains to show is the opposite implication. Let TmP os ⊆ E. Indeed, by Lemma 7.10
there is stable theory E′ v E with T ⊆ E′, therefore the upward preservedness of T under v yields
T ⊆ E. 2

I conclude this section with the translation of Lemma 7.1.

Minimal Expandability Lemma 7.12. For every set T of sentences of LK and every stable
theory E ⊇ T there is a minimal stable expansion E′ of T with E′ v E.

Proof. Let E be stable with T ⊆ E. We have H(TK1) ⊆ H(EK1). Let M
P C

|= H(EK1). Of course,

M
P C

|= H(TK1). By Lemma 7.1 there is a minimal N ≤M with N
P C

|= H(TK1). By Lemma 7.9 there



exists stable E′ satisfying N
P C

|= H(E′K1
). By Lemma 7.5, E′ is a minimal stable theory which satisfies

E′ v E and TK1 ⊆ E′. Hence by Theorem 6.6, T ⊆ E′. 2

Lemmas 7.10 and 7.12 are interesting in their own right. They will be instrumental in the proof of
the main result of this paper. In particular, Lemma 7.12 assures that every consistent set of sentences
of LK has a minimal stable expansion. (Moore’s expansions do not possess this nice property.)

8. THE COMPLETENESS OF THE MINIMAL-KNOWLEDGE ASSUMPTION
The minimal-knowledge assumption MKA, that I have been investigating with varying intensity for
over a decade now (with the completeness of MKA presented at [Suc05]), is defined for every set T
of sentences and every sentence ϕ of LK as follows.

ϕ ∈MKA(T ) iff TmP os = (T ∪ {ϕ})mP os. (12)
The intuitive meaning of the above definition is that:

ϕ follows from T under MKA iff ϕ does not add new modally positive S5-consequences
to T , that is, iff every modally positive sentence S5-provable from T ∪ {ϕ} is already
S5-provable from T .

Because the modally positive sentences represent the actual knowledge contained in a knowledge base
(as opposed to the modally negative ones, which represent the ignorance), MKA(T ) articulates the
induction-like requirement that “nothing more than T is known”. This indicates the circumscriptive
nature of MKA.

Here are my main results which state that MKA, Cnmax, and CnAE coincide.
The Completeness Theorem 8.1. For every set T of sentences of LK ,

CnAE(T ) = MKA(T ).
Proof. By equation (12), we have to prove that for every sentence ϕ of LK ,

ϕ ∈ CnAE(T ) iff (T ∪ {ϕ})K1∩mP os = TK1∩mP os.

(⇒). Let ϕ ∈ CnAE(T ), i.e. for every minimal expansion E of T , ϕ ∈ E. Because TK1∩mP os ⊆ (T ∪
{ϕ})K1∩mP os, it suffices to show that for every stable E, if TK1∩mP os ⊆ E then (T∪{ϕ})K1∩mP os ⊆ E.
So, assume the former. By Lemma 7.12 we get a minimal stable E′ with TK1∩mP os ⊆ E′ and E′ v E.
By Lemma 7.10 there is a E′′ v E′ with T ⊆ E′′. In particular, TK1∩mP os ⊆ E′′. But E′ is a minimal
expansion for TK1∩mP os, therefore E′′ = E′. Hence T ∪ {ϕ} ⊂ E′. Now, because E′ v E, using
Lemma 7.10 again we conclude (T ∪ {ϕ})K1∩mP os ⊆ E.

(⇐). Assume (T ∪ {ϕ})K1∩mP os = TK1∩mP os. By Lemma 7.12 there is a minimal stable expansion
E of T . We have (T ∪ {ϕ})K1∩mP os ⊆ E. By Lemma 7.10 there is E′ v E with T ∪ {ϕ} ⊆ E′. In
particular, T ⊆ E′. Minimality of E yields E = E′, i.e. ϕ ∈ E. 2

In conclusion, one obtains
Corollary 8.2. For every set T of sentences of LK ,

MKA(T ) = Cnmax(T ).
Proof by application of Theorems 5.3 and 8.1. 2

Theorem 8.1 determines the limit of the proving power of the operation CnAE : no modally positive
sentence ϕ may be derived from T using CnAE unless ϕ is S5-derivable from T . This restriction does
not apply to iterative applications of CnAE which, as I will indicate in Section 9, can produce certain
new modally positive consequences of the knowledge base in question.

The following two results show close relationship between CnAE and CnS5.
Theorem 8.3. For every set T of sentences of LK ,

CnAE(T ) = CnAE(CnS5(T )).
Proof follows from Lemma 8.1 and fact that MKA(T ) = MKA(CnS5(T )). 2

(CnExp does not have the above property; e.g. for T = {Kp1} the equality does not hold.)
The second, intuitively obvious, result allows one to reverse the order of definitions used in this

paper and to define the consequence operation CnS5 of system S5 by means of CnAE .



Theorem 8.4. CnS5 is the maximal monotonic consequence operation with
CnS5(T ) ⊆ CnAE(T ) (13)

holding for every set of T of sentences of LK .
Proof. The inclusion follows from Theorem 3.1. Let Cn? be a monotonic consequence operation

satisfying
CnS5(T ) ⊆ Cn?(T ) ⊆ CnAE(T )

for every T , with CnS5(T ) 6= Cn?(T ) for some T . CnS5(T ) is characterized by all stable theories
containing T , and CnAE(T ) is characterized by all minimal stable theories containing T . Monotonic
consequence Cn? must eliminate certain stable E’s (otherwise it would coincide with CnS5). Let E be
an example of such eliminated stable theory. Since every stable theory is its own minimal expansion,
we have CnAE(E) = E, but Cn? 6⊆ E. Hence Cn?(T ) 6⊆ CnAE(T ).
Obviously, if Cn?(T ) ⊆ CnAE(T ) and Cn′?(T ) ⊆ CnAE(T ) then Cn?(T ) ∪ Cn′?(T ) ⊆ CnAE(T ),

thus there is only one maximal monotonic consequence operation CnS5 that satisfies (13). 2

One can extend the non-modal methods used in [Suc90; SS90; Suc93] to investigate stronger and
weaker versions of MKA, analogically as it is the case with various versions of the closed-world
assumption. For instance, one can consider a Minker style (cf. [Min82]) weak MKA which restricts
its content to the sentences of the form ¬Kϕ, where ϕ is modal-free. It also appears a routine matter
to bring in the quantifiers to LK .

9. STRONGER VARIANTS OF MKA
To all appearances, MKA seems like a very weak consequence operation, which is not capable of
deriving modally positive conclusions from a knowledge base unless these conclusions are S5-derivable
from the base’s contents. For instance, p2 6∈ MKA({¬Kp1 ⊃ p2}). This fact seems counterintuitive
to some researchers. However, if one needs to infer p2 from {¬Kp1 ⊃ p2} (e.g., in logic programming
applications it may be a legitimate requirement), then the set of premises should be partitioned onto
strata, according to intentional priorities of the occurrences of negation. In our case, one can split
{¬Kp1 ⊃ p2} onto 0 (the set of its positive clauses) and {¬Kp1 ⊃ p2} itself (the remainder), and
easily verify that

p2 ∈MKA({¬Kp1 ⊃ p2} ∪ (MKA � p1)(0)),
where “� p1” means “restricted to the language of p1”.
More generally, one can use mapping H of Section 7 to translate the completeness theorem of

prioritized closed-world assumption with respect to hierarchically minimal model semantics (thm. 5.5
in [SS90] and thm. 4.5.5 in [Suc00a]) to obtain analogous result for stratified MKA and a restricted
form of maximal semantics. This, for instance, has been done in [Suc00c] (cf. [Rin94] for a similar
strengthening of autoepistemic logic).

10. OTHER FORMALIZATIONS OF AUTOEPISTEMIC INFERENCES
In this section I briefly discuss other suggested formalizations of autoepistemic logic known from
professional literature.

The inherent inability of modal system S5 to derive ¬Kp2 from {p1} was by no means easy to fix.
For example, McDermott and Doyle (cf. [MD80], p. 50) added to S5 the anti-necessitation rule of
inference (3) that they somewhat simplistically interpreted as:

ϕ 6∈ E
¬Kϕ ∈ E

(14)

rather than using the fixed-point equation (1) and interpretation (4). (In [MD80], (14) was formulated
as:

If ϕ 6∈ CnMDD(T ) then ¬Kϕ ∈ CnMDD(T ). (15)
This made the resulting logic an inconsistent system. For instance, both ¬Kp1 and ¬Kp2 are in
CnMDD({Kp1∨Kp2}), therefore ¬(Kp1∨Kp2) ∈ CnMDD({Kp1∨Kp2}). (Similar anomaly plagued
early versions of the closed-world assumption, e.g., the one of [Rei78]). Although the McDermott-Doyle
rule (14) is inconsistent with S5, every stable theory E does obey it via the fixed-point interpretation of



the anti-necessitation: if ϕ 6∈ E then ¬Kϕ ∈ E! This example visualizes the subtlety of autoepistemic
inference.

The inconsistency of McDermott and Doyle’s rule was addressed by many researchers. Here I
briefly comment on work of Moore [Moo85], Parikh [Par91], Levesque [Lev90], Schwarz [Sch92], and
Kaminski [Kam91].
As I have indicated in Section 1, the approach proposed by Moore restricted stable theories con-

sidered as models for a knowledge base T to its expansions E, which Moore defined by means of the
following fixed-point equation that encapsulated both necessitation and anti-necessitation:

E = Cn(T ∪ {Kϕ | ϕ ∈ E} ∪ {¬Kϕ | ϕ 6∈ E}), (16)
where Cn denotes the propositional consequence operation. The corresponding consequence operation
CnExp was given by:

CnExp(T ) =
⋂
{E | E is an expansion of T} (17)

Operation CnExp is nonmonotonic and properly captures the easy case of modal-free T . As I pointed
out in Example 1.1, in some other cases CnExp reveals paradoxical behavior, e.g. the innocent theory
{Kp1} has no expansions at all. Moreover, the implicit form of the definition of CnExp given by the
fixed-point equation (16) does not make it particularly easy to compute, because in order to decide
if ϕ ∈ CnExp(T ) one has to find all expansions of T first. (Substantially faster algorithms are known;
cf. [MaT91]; see also [AAA10] for a more recent methods of computing expansions.)

Parikh improved the McDermott and Doyle’s rule (15) by restricting it to cases when this rule
was already applied to certain subformulas of ϕ. However, {Kp1 ∨Kp2} still remains S5-inconsistent
under this restriction.

Schwarz investigated S-expansions of T , that is, stable solutions of fixed-point equation (1) only
under the anti-necessitation rule interpreted as (4) and closed under consequence operation CnS of
a subsystem S of S5. (In [Sch92], the fixed-point equation had the following form:

E = CnS(T ∪ {¬Kϕ | ϕ 6∈ E}), (18)
where S is a subsystem of S5.) Corresponding autoepistemic consequence operation was given by

CnS−exp(T ) =
⋂
{E | E is an S-expansion of T}. (19)

This approach yielded a variety of nonmonotonic logic which, however, did not comprise nonmonotonic
S5 since in the case of S = S5, (19) defines the monotonic consequence operation CnS5. It has been
demonstrated that Moore’s formalization of autoepistemic logic is a special case of a system defined
by (19), where S = KD45.
Levesque suggested a use of an extra operator O, with sentences Oϕ having the intentional meaning

“only ϕ is known” (although expressed in terms of belief rather than knowledge). Using the axiom
of the form (∀x)(bird(x) ⊃ (K¬fly(x) ∨ Kfly(x)) rather than rule (15), he formally derived from
a formalization of the well known puzzle about Tweety a modally positive sentence Kfly(Tweety),
not S5-provable from that formalization. His proof used, in fact, only symmetric axioms which are
true for a predicate P iff they are true for P ’s negation, therefore the sentence K¬fly(Tweety) has
a similar proof in his system. This paradox suggests either an error in the above mentioned proof or
inconsistency of axiomatization of operator O.
Kaminski’s approach seems somewhat complementary to ours. The logics he considered are defined

by (19) and (4), the latter being restricted to modal-free premises ϕ. (In [Kam91], (18) was replaced
by:

E = CnS(T ∪ {¬Kϕ | ϕ ∈ L \ E}), (20)
where L was the set of modal-free sentences of LK .)
For S = S5, the solutions of (20) are the minimal expansions of T , and, consequently, (19) paired

with (20) characterize CnAE . Because of implicit character of (20), characterization (19) seems more
difficult to compute (one have to find all the solutions of the equation (20) first) than MKA. Be-
cause both (12) and (19) may be computationally simplified, comparison of complexity of these two
characterizations may require further studies. However, general undecidability of CnAE (cf. [Suc03;
Suc06]) makes any computational simplifications rather limited. (Cf. also [TV10] for a comprehensive
review of complexity issues pertinent to autoepistemic logic.)



11. FORMALIZATIONS OF OTHER SCHEMES OF NONMONOTONIC DEDUCTION
Default logic, introduced by Reiter around 1980, is (according to characterization in [Suc00b]) a
generalization of the Moore’s syntactic scheme (3) discussed in Section 1. In addition to standard
propositional axioms and modus ponens, it allows for nonmonotonic rules of inference called defaults.
They have the form of

ϕ : Mψ1, . . . ,Mψn

χ
, (21)

where M is the modal operator of possibility that may be understood as an abbreviation of ¬K¬.
(Some authors prefer to to skip occurrences of M in front of ψi’s; others use symbol 3, instead; also
ϕ and/or Mψi’s are/is usually skipped if tautologically true.)

Definition of semantics of default logic is somewhat similar to Moore’s autoepistemic logic. It is
based on two sets of propositions:
T - the set being the subject of closure under the default rules, and
E - the set of assumptions, sometimes referred to as the context.
The meaning of the rule (21) is formally described by:

ϕ ∈ T | ¬ψ1 6∈ E | . . . | ¬ψn 6∈ E
χ ∈ Φ(T,E) . (22)

Given a set D of defaults, operator Φ(T,E) of closure of T under rules (21) of D relative to E
is defined as the closure of T both under propositional consequence and under the corresponding
productions (22) of D.

Set E is called and extension (a nonmonotonic deductive closure in the sense of Section 1, that is)
of T iff

Φ(T,E) = E.

As a result, E is both supported and closed under all rules (21) of D.

Example 11.1. The empty theory 0 with two default rules
: Mp

¬q
and : Mq

¬p
has two extensions:

E1 = Cn(¬p) and E1 = Cn(¬q),
while the empty theory 0 with one default rule

: Mp

¬p
has no extensions. (The latter rather counterintuitive fact is a result of the implicit requirement of
the supportedness that all extensions must satisfy.) 2

Several other schemes of nonmonotonic deduction addressed specifically the use of universally
quantified formulas, the so-called clauses.
More analysis of default logic may be found in [MaT90; MaT93; MN94].
Predicate (resp.: domain) circumscription, introduced by McCarthy in late 70-ties (see [McC80])

aims at defining the concept of relation-minimal model (resp.: Herbrand model) of first-order theory
within its language, which goal was not met (as shown in [EMR85]) because it requires second-
order (resp.: infinitary) logic. It has been later accomplished by Lifschitz (see [Lif85]) in terms of the
so-called second-order circumscription. Its first-order counterpart, substantially different from the
original McCarthy’s attempt to express second-order properties with first-order formulas, is given by
the minimal entailment `<, or, equivalently, by the set Circ2(T )∩L, where Circ2 is the second-order
circumscription consequence operator and L is the set of first-order sentences.
Complete and sound characterizations of `< for certain classes of formulas in terms of provability

(something along the lines of the completeness theorem) for a number of partial orderings <, including
the ones mentioned above, are known from the literature (e.g., [Min82; YH85; Suc94; Suc97; Suc00a]).



Also, some relationships between the logic of minimal entailment and default logic are known. For
instance, a minimal model of set T which admits elimination of quantifiers can be defined in terms
of an extension of T and the set of defaults

Dnas = { : M¬ϕ
¬ϕ

| ϕ is an atomic sentence}.

On the other hand, minimal entailment seems to evade the schemes defined by the defaults because it
is characterized by the inference rule (first introduced in [Suc88b] and extensively studied in [Suc88a;
Suc89]) of the form:

“If adding ϕ to the premise set T does not enlarge the set of positive consequences of T
then infer ϕ”

which clearly doesn’t fall under the scheme (22) (obviously, not under Dnas).
It turns out that (some variants of) minimal model semantics provide logic programs, usually

represented as finite sets of clauses, with standard meanings. Regular behavior of such semantics is a
consequence of Bossu-Siegel’s classic result of [BS84] which ascertains that for every set T of clauses
and every non-minimal model M of T there is a minimal model of T below M.
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