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Abstract

This paper investigates a consistent versions cwaS of sometimes
inconsistent Reiter’s closed world assumption cwa, proving (theorem
4.3) that for every ∀-sentence ϕ and for every ∀-theory Σ,

ϕ ∈ cwaS(Σ) iff Σ `min ϕ.

A relativized version of this characterization (theorem 7.3) remains
valid if not all relations are subject to minimization. Moreover, the
paper relates cwaS to cwa and to Minker’s generalized closed world
assumption GCWA. Finally, a possibility of procedural semantics for
cwaS has been indicated.

1 Introduction

Reiter’s closed world assumption cwa has been introduced in [Rei78].
It may be defined as follows.

If an atomic sentence ϕ is not implied by the information
contained in a data base then the negation of ϕ is asserted.

In some cases cwa has led to a contradiction when applied to indefinite
data bases, where disjunctions of atomic sentences are allowed. E.g.
cwa(ϕ ∨ ψ) entails both ¬ϕ and ¬ψ, that is to say, ¬(ϕ ∨ ψ). Minker
has proposed in [Min82] a weaker version GCWA of cwa. It asserts the
negation of an atomic sentence ϕ only if for every positive (i.e. without
appearance of negation) ∀-sentence ψ, which is non-derivable from a

1This paper generalizes results of [Suc89].



data base, ϕ ∨ ψ cannot be derived from that data base. It has been
proved (cf. [She88], thm. 32.5) that GCWA coincides with cwa in all
data bases for which cwa is consistent.

Another version of closed world assumption, cwaS, has been pro-
posed in [Suc87]:

A sentence ϕ is asserted if, and only if, it does not enlarge
the set of positive consequences of the data base.

Minimal model semantics, based on Lyndon’s relation of enlarge-
ment of [Lyn59], seems to reflect the intended meaning of closed world
assumption. Therefore, a syntactic system completely characterizing
this semantics may be recognized as a proper formulation of cwa. Find-
ing such a system appears to be one of the main unsolved2 problems in
logical foundations of Artificial Intelligence. It turns out that cwaS pro-
vides such characterization within the class of all first-order ∀-sentences
(or, equivalently, within the class of all clauses). Other known solutions
to the problem of characterization do not have this completeness prop-
erty. In particular, GCWA does not prove some composed quantifier-
free sentences which are true in all minimal models for a data base.

2 Prerequisites from first-order logic

In the following sequel, we follow the standard terminology and nota-
tion of first-order model theory, which can be found in [Bar78], Chap.
A2. We restrict ourselves to a first-order language L with logical con-
nectives ∧,∨,¬,∀ and ∃ (all other connectives we treat as appropriate
abbreviations). A formula ϕ is atomic iff no logical connective appears
in ϕ. A formula ϕ of L is {=}′-positive ({=}′ denotes the set of all
other than = relation symbols of L) iff no relation symbol other than
= appears in ϕ within a scope of negation. An ∀-formula is a formula
of the form ∀x1∀x2...∀xnϕ (abbreviated as ∀~xϕ) where ϕ is quantifier-
free. A sentence of L is a formula of L without appearances of free (i.e.
non-quantified) variables. A theory in L is a set of sentences of L. We
usually denote formulae by lower case Greek letters, and theories by
upper case Greek letters. ∀, when used in appropriate context, denotes
the set of all ∀-sentences of L, Atom denotes the set of all atomic sen-
tences of L, and Pos{=}′ denotes the set of all {=}′-positive sentences
of L.

First-order structures for L we usually denote by A, B, M, N , ...,
and their domains by A,B,M,N, ..., respectively. The satisfaction re-
lation is denoted by |=, i.e. M |= ϕ[s] means that ϕ is true in structure

2cf. [BS84], [EMR85], [BH86], [Hin88], and [She88].



M under assignment s of its free variables (formally, s is a function from
variables of L into the domain M ofM). If ϕ is true inM under every
assignment s then M |= ϕ is used instead. If F is a function symbol
of L then FM denotes the corresponding function in M. Analogically,
RM denotes the relation in M corresponding to relation symbol R.
We use M ⊆ N iff M ⊆ N and for every function symbol F of L,
FM = FN |̀M , and for every relation symbol R of L, RM = RN |̀M ,
where “|̀ ” means “restricted to”. M |= Σ is an abbreviation of: for
all ϕ ∈ Σ, M |= ϕ. It states that the structure M is a model of Σ.
We denote the class of all models of Σ by Mod(Σ). We make an im-
plicit use of the completeness theorem of first-order logic by applying
Σ ` ϕ in the sense of Mod(Σ) ⊆ Mod(ϕ). We write Σ `K ϕ iff K is
a class of first-order structures and Mod(Σ)∩ K ⊆Mod(ϕ) (because
of typographic problems we avoid using bold type style in subscripts).
Moreover, by ΣΓ we denote the set Cn(Σ) ∩ Γ. In particular, ΣL coin-
cides with the set Cn(Σ) of all first-order consequences of Σ within the
language L.

Among others, we will need the following classic result from model
theory of first-order logic.

 Loś - Tarski Theorem 2.1 Σ is equivalent to a ∀-theory iff for every
A and B, (A |= Σ and B ⊆ A) implies (B |= Σ).

Proof e.g. in [Bar78], Chap A2, thm. 3.11. 2

3 The closed world assumption

In this paper we identify a deductive data base with a consistent ∀-
theory Σ in a first-order language L. The consistent version cwaS
(introduced in [Suc87] for purely relational languages) of Reiter’s closed
world assumption is defined as follows.

Definition 3.1 ϕ ∈ cwaS(Σ) iff ϕ ∈ ∀ and (Σ∪{ϕ})Pos{=}′
= ΣPos{=}′

.
2

We will show in Section 5 that cwaS is stronger than cwa in all cases
cwa is consistent, and strictly stronger then generalized closed world
assumption GCWA of [Min82].

The following theorem shows that cwaS forms a consistent conse-
quence operation for conservative reasoning from {=}′-positive frag-
ments of universally axiomatizable deductive data bases.

Theorem 3.2 Let Σ ⊆ ∀.
(i) cwaS(Σ) is consistent unless Σ is not.



(ii) If Π ⊆ ∀ and ΠPos{=}′
= ΣPos{=}′

then Π ⊆ cwaS(Σ).

Proof in [Suc87], theorem 4.1. 2

4 Minimal models

The need for some kind of minimal semantics does not seem new to
the Philosophy of Science. One of well known articulations is the Ock-
ham’s Razor Principle: Entia non sunt multiplicanda praeter necessi-
tatem ([Ock]). In Artificial Intelligence, the last decade abounded in
struggles with syntactic media of minimization. However, the problem
of syntactic characterization of minimal entailment, which seems to be
one of the central issues in model theory of AI logic, was left without
the solution3. In this section we hope to improve that situation, at least
as far as ∀-fragment of L is concerned.

The relation � of partial ordering in the class of first-order struc-
tures for L is defined as follows:

M � N iff M = N, and for every function symbol F of
L, FM = FN , and for every atomic formula ϕ of L and
every assignment s in M, M |= ϕ[s] implies N |= ϕ[s].

(The relation � has been first introduced by Lyndon [Lyn59] under the
name of enlargement.)

Structure M is a minimal model of Σ iff M |= Σ, and for every
N |= Σ, if N � M then N =M. We denote the class of all minimal
models of Σ by Min(Σ). Class J is called dense in class K iff for every
N ∈ K there is M ∈ J with M � N . Theory Σ is called minimally
modelable iff Min(Σ) is dense in Mod(Σ), i.e. for every M |= Σ
there exists a minimal N |= Σ with N � M. We use Σ `min ϕ as
an abbreviation for Σ `Min(Σ) ϕ and Cnmin(Σ) as an abbreviation for
{ϕ ∈ L | Σ `min ϕ}.

The following theorem will be used in the proof of our main result.

Lyndon Theorem 4.1 For every Σ ⊆ L, and every first-order struc-
ture A for L,

A |= ΣPos{=}′
iff (∃B ≡ A)(∃M |= Σ)(A ⊆ B and M� B).

Proof in [Lyn59], theorem 5. 2

A lemma from [BS84] guarantees a regular behavior of minimal
model semantics in case of Σ ⊆ ∀ (the proof is quoted from [Suc86]).

3A special case of this problem for purely relational languages has been successfully
attacked in [Suc89] with model-theoretic forcing.



Lemma 4.2 If Σ ⊆ ∀ then Σ is minimally modelable.

Proof. Let K be a chain (relative to �) of models of an ∀-theory
Σ. LetM = ∩ K. It may be easily verified by induction that for every
quantifier-free formula ϕ and assignment s in M, if for all N ∈ K,
N |= ϕ[s] then M |= ϕ[s]. Thus (∀N ∈ K)(N |= ∀~xϕ) implies M |=
∀~xϕ, and hence M |= Σ. The Kuratowski - Zorn Lemma completes
the proof. 2

Now, we are ready to prove our first main result.

Main Theorem 4.3 For every Σ ⊆ ∀ and ϕ ∈ ∀,
ϕ ∈ cwaS(Σ) iff Σ `min ϕ.

Proof. Implication to the right.
Assume ϕ ∈ cwaS(Σ). Let A be a minimal model for Σ. In particular,
A |= ΣPos{=}′

. Using ϕ ∈ cwaS(Σ) we obtain, by definition 3.1, A |=
(Σ ∪ {ϕ})Pos{=}′

. By Lyndon Theorem 4.1 it means that there exist

models M and N satisfying A ⊆ M, A ≡ M, N � M, and N |=
Σ ∪ {ϕ}. Let us note that for every sequence ~a of elements of A, the
value of FN (~a)(= FM(~a) = FA(~a)) is in A. Hence N |̀ A is a valid
first-order structure for L. So, let B = N |̀A. We have B ⊆ N , and
therefore, by Σ ∪ {ϕ} ⊆ ∀ and  Loś-Tarski Theorem 2.1, B |= Σ ∪ {ϕ}.
On the other hand, B � A. Therefore by minimality of A, B = A.
Thus A |= ϕ.

Implication to the left.
Assume Σ `Min(Σ) ϕ. Let A |= Σ. By lemma 4.2, Σ is minimally
modelable. So, let B � A be a minimal model for Σ. We have B |= ϕ,
that is to say, B |= Σ∪{ϕ}. Using Lyndon Theorem 4.1 again, we obtain
A |= (Σ∪{ϕ})Pos{=}′

. We have shown that (Σ∪{ϕ})Pos{=}′
⊆ ΣL, which

obviously implies (Σ∪{ϕ})Pos{=}′
⊆ ΣPos{=}′

. Application of definition
3.1 completes the proof. 2

5 Other closed world assumptions

The relationships between cwaS, cwa, and GCWA will become clear
after we reformulate their definitions. For that purpose we need the
following fact.

Lemma 5.1 ∀ If Σ ⊆ ∀ ∩ L then (Σ∀∩Pos{=}′
)L = (ΣPos{=}′

)L.

Proof. Since Σ∀∩Pos{=}′
⊆ ΣPos{=}′

, it suffices to prove that

Σ∀∩Pos{=}′
|= ΣPos{=}′

. Let A |= Σ∀∩Pos{=}′
(= ΣPos{=}′

∩ ∀). By  Loś -

Tarski Theorem 2.1, there exists B |= ΣPos{=}′
with A ⊆ B. By Lyndon

Theorem 4.1, there exist M |= Σ, B′ |= ΣPos{=}′
, and M |= Σ, such



that B ⊆ B′, and B′ is a homomorphic image of M. Let A, B′, and
M be the domains of models A,B′, and M, respectively. We have
A ⊆ B′ = M . Let N = M |̀ A. Because Σ ⊆ ∀, by  Loś - Tarski
Theorem, N |= Σ. It is easily seen that A is a homomorphic image of
M. Using Lyndon Theorem again, we obtain A |= ΣPos{=}′

. 2

It allows us to put the definition of cwaS in the following form.

ϕ ∈ cwaS(Σ) iff ϕ ∈ ∀ and (Σ ∪ {ϕ})∀∩Pos{=}′
= (Σ)∀∩Pos{=}′

.

It turns out that if in the right side of the above statement “Σ” is substi-
tuted by “ΣAtom”, “ϕ ∈ ∀” by “ϕ ∈ (Atom∪ nAtom)”, and “Pos{=}′”,
by “Pos”, then cwaS is transformed onto an equivalent definition of
Reiter’s cwa, that is to say,

ϕ ∈ cwa(Σ) iff ϕ ∈ (Atom ∪ nAtom) and
(ΣAtom ∪ {ϕ})∀∩Pos = (ΣAtom)∀∩Pos.

Similarly, GCWA may be equivalently reformulated as

ϕ ∈ GCWA (Σ) iff ϕ ∈ (Atom ∪ nAtom) and
(Σ ∪ {ϕ})∀∩Pos = (Σ)∀∩Pos.

(Proofs are straightforward.)

The above observations make it clear that both cwa and GCWA
restrict conclusions of cwaS to atomic and negated atomic sentences.
Moreover, cwa accepts only the atomic part of a data base as the ac-
tual set of premises. Knowing that cwaS is ∀-complete with respect
of minimal model semantics of a data base, one can easily character-
ize the scope of such completeness for GCWA and cwa: GCWA is
(Atom∪nAtom)-complete with respect to minimal model semantics of
the data base, and cwa is (Atom ∪ nAtom)-complete with respect to
minimal model semantics of its atomic part; both under necessary as-
sumption that L does not contain the equality symbol = (in such a case
Pos{=}′ = Pos). Consequently, a modification WGCWA of GCWA
(cf. [LMR88] for details) is not (Atom∪nAtom)-complete with respect
to minimal model semantics of the data base, simply because WGCWA
does not coincide with GCWA.

6 Example

Now, we provide an example which shows that cwaS is closer to minimal
model semantics than cwaR and GCWA. We pick up a language L
with two unary relation symbols S and T , and one constant symbol
c. Moreover, we adopt Σ = {S(c) ∨ T (c)}. Since the equality symbol



= does not belong to L, without loss of generality we may restrict
the semantics of L to finite models with four-element domains. In
this case every model of Σ is isomorphic to triple 〈C,CS, CT , a〉, where
C is the four-element domain of 〈C,CS, CT , a〉, CS and CT are the
(unary) relations corresponding to symbols S and T , a is an element
of C, and a ∈ CS ∪ CT . For each ϕ ∈ L, Σ ` ϕ iff ϕ is true in
every four-element model of Σ (general methods of such reductions
may be found in Ackermann’s classic text [Ack54]). Every four-element
minimal model of Σ is isomorphic to triple 〈C,CS, CT , a〉, where CS ∪
CT = {a}, and CS ∩ CT = 0. The class of all minimal models of Σ is
dense in the class of all models of Σ.

Let ϕ = ¬(S(c) ∧ T (c)). We have ϕ ∈ Cnmin(Σ). Theorem 4.3
yields ϕ ∈ cwaS(Σ). It follows from the definition of GCWA that
GCWA may add to Cn(Σ) only negations of atomic sentences. Hence
ϕ 6∈ GCWA(Σ). On the other hand, ¬S(c)∧¬T (c) ∈ cwaR(Σ) because
Σ 6` S(c) and Σ 6` T (c). Therefore cwaR is inconsistent in this case.

7 Relativized closed world assumption

In this section we consider a more general case of minimal model se-
mantics, relativizing it to a set Γ of relation symbols of L. We assume
that Γ is a set of (not necessarily all) relation symbols of L, and that
the equality symbol = does not belong to Γ. We will use the following
Γ-relativizations of the notions related to the positiveness and mini-
mality.

A formula is Γ-positive iff it is equivalent to a formula which does
not contain an appearance of a symbol of Γ in a scope of a negation.
PosΓ denotes the set of all Γ-positive sentences of L.

The relation �Γ of partial ordering in the class of first-order struc-
tures for L is defined as follows:

M �Γ N iff M = N, and for every function symbol F
of L, FM = FN , and for every relation symbol R not in
Γ, RM = RN , and for every atomic formula ϕ of L and
every assignment s in M, M |= ϕ[s] implies N |= ϕ[s].

It is easily seen that Γ ⊆ Γ′ implies �Γ ⊆�Γ′ .

The notions of Γ-minimal model, MinΓ(Σ),Γ-density, and Γ-minimal
modelability are defined appropriately by substituting � by �Γ in the
definitions of Section 4.

Our intention for introducing these Γ-relativizations is to exclude
from the scope of minimization those relations which do not have their



names in Γ. This gives us all the intended expressiveness of the predi-
cate circumscription. Equivalently, extending L by distinct symbols ϑ
for negations of relation symbols % one does not want to minimize and
adding axioms of the form (∀~x)(%(~x) ≡ ¬ϑ(~x)) gives us the same effect,
however, for the price of unnecessary complications.

One can observe that if Γ contains all the relation symbols of L
but the equality symbol = then all Γ-relativized notions coincide with
their corresponding Γ-free counterparts of Section 4. The definition of
Γ-relativized cwaS reads as follows.

Definition 7.1 ϕ ∈ cwaΓ
S(Σ) iff ϕ ∈ ∀ and (Σ∪{ϕ})PosΓ = ΣPosΓ . 2

Let us note that the lemma 4.2 holds for Γ-relativized version of
minimal modelability. However, to obtain the proof for Γ-relativized
version of theorem 4.3 we need to strengthen Lyndon Theorem 4.1.

Theorem 7.2 For every Σ ⊆ L, and every first-order structure A for
L,

A |= ΣPosΓ iff (∃B ≡ A)(∃M |= Σ)(A ⊆ B and M�Γ B).

Proof is easily obtained from the proof of theorem 5 in [Lyn59] by
putting Q3 = Γ (it is essential that the equality symbol = does not
belong to Γ) instead of Q3 = {=}′, where Q3 is a parameter used in
that proof. 2

It is a routine translation to transform the proof of theorem 4.3 onto
the proof of its following generalization.

Main Theorem 7.3 For every Σ ⊆ ∀ and ϕ ∈ ∀,
ϕ ∈ cwaΓ

S(Σ) iff Σ `MinΓ(Σ) ϕ. 2

8 Open problems and conjectures

The syntactic characterization of the whole Cnmin(Σ) remains one of
the most intriguing open questions. Also the weakest syntactic criterion
for minimal modelability of Σ seems unknown.

Since, in the first-order language of arithmetic with additional unary
relation symbol S, Peano’s Axioms outside S + induction on S + min-
imality of S prove all true arithmetic sentences relativized to S, our Π2

construction based on non-increasing the set of Γ-consequences can-
not be complete everywhere outside ∀. We believe, however, that the
following claims are true.



Conjecture 8.1 If the condition “ϕ ∈ ∀” was replaced by “ϕ ∈ ∀∪∃”
in the definition 3.1 of cwaS then theorem 4.3 would hold for each
minimally modelable Σ and ϕ ∈ ∀ ∪ ∃. 2

Conjecture 8.2 If the condition “ϕ ∈ ∀” was replaced by “ϕ ∈ ∀∪∃”
in the definition 7.1 of cwaΓ

S then theorem 7.3 would hold for each
Γ-minimally modelable Σ and ϕ ∈ ∀ ∪ ∃. 2

An anonymous referee kindly pointed out the lack of procedural
semantics for cwaS. Certainly, it follows from the definition 3.1 that
(the degree undecidability of) cwaS(Σ) is Π1 relative to Cn(Σ), or Π2

relative to Σ, and seemingly there is no good reason why it should
be less. On the other hand, all asymptotically decidable problems (in
particular those ones asymptotically decidable by finite failure proof
procedures) are ∆2, which is a proper subclass of Π2. Therefore the
problem of asymptotic decidability of cwaS(Σ) relative to Σ appears
both important and non-trivial.

Although, as it follows from analysis in Section 5, GCWA(Σ) is a
decidable in cwaS(Σ) subset of cwaS(Σ), which means that GCWA is
a simpler than cwaS scheme of reasoning, the only immediate conclu-
sion one can draw from the definition of GCWA is that, similarly to
cwaS(Σ), GCWA(Σ) is Π2 relative to Σ. This, probably, gave rise to
introducing WGCWA, which has been demonstrated to be ∆2 rela-
tive to Σ and complete with respect to a finite failure proof procedure
SLINF (see [LMR88] for details). As we have noted in Section 5,
however, WGCWA does not characterize minimal model semantics,
even in class of atomic and negated atomic sentences in a purely rela-
tional language, and therefore it can not provide an asymptotic proof
procedure for minimal entailment.

In our opinion this problem requires a different approach, which we
briefly describe below. It has been demonstrated in [Suc88] that cwaS is
completely characterized by a generalized weak model-theoretic forcing.
Moreover, an asymptotic “finite failure proof procedure” forces for ∀∃-
fragment of standard weak model-theoretic forcing has been presented
in [Suc85], and proven to be recursive relative to set of atomic and
negated atomic consequences of Σ. We believe that procedure forces
may be extended over ∀-fragments of generalized weak model-theoretic
forcing discussed in [Suc88] and its Γ-relativizations introduced in [ST].
If this is the case then such an extension constitutes a procedural se-
mantics for cwaΓ

S, and moreover the following supposition is true.

Conjecture 8.3 cwaΓ
S(Σ) is Π1 relative to Γ and Cn(Σ)∩Quantifier-free.

2



The truthfulness of conjecture 8.3 in case of purely relational lan-
guage L and Γ = {=}′ has been shown in [Suc87], theorem 6.1.
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