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Abstract

This paper constitutes a brief study of the following scheme DAΓ of

default reasoning:

Given set of premises Σ, assume ϕ if and only if, for every

γ ∈ Γ, Σ ∪ {ϕ} does not entail γ unless Σ does,

where Γ and Σ are sets of clauses, and ϕ is a clause. The problem of

∀-completeness of DAΓ with respect to �nest model semantics is investi-

gated. A method of deriving ∀-completeness of DAΓ1∩Γ2 assuming DAΓ1

and DAΓ2 are known to be ∀-complete is presented. This method yields

∀-completeness of instances of DAΓ with respect to totally minimal seman-

tics, discriminant minimal semantics, Herbrand semantics, and minimal

Herbrand semantics. It is shown that the last of these completeness results

is strictly stronger than analogous characterization using an extension of

the generalized closed-world assumption GCWA.

1 Introduction

In this paper, we investigate instances of the following scheme D of default
reasoning:

If the assumption ϕ doesn't introduce unwanted consequences to the
set of premises Σ then assume ϕ.

1
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Although scheme D does not seem to cover all the default rules discussed in
professional literature, it has a number of intriguing applications in deductive
data bases and in logic programming. For example, all published versions of
the closed-world assumption are, in fact, instances of this scheme. If the set of
�unwanted consequences�, say Γ, is �nite then D may be expressed in the form
of a set of Reiter style default rules of inference:

Γ0 ∪ {M(ϕ ∧ ¬γ1), ...,M(ϕ ∧ ¬γk)}
ϕ

(1)

where Γ0 ranges over consistent subsets of Γ, and γ1, ..., γk are all elements of
Γ \Γ0. For instance, if formula false is the only unwanted consequence then (1)
may be reduced to a single normal default:

{M(ϕ)}
ϕ

.

To express D in the general case of in�nite Γ, one must admit in�nitary default
rules of inference. For this reason, we will utilize a di�erent way of formalizing
default schemes of this kind.

Using the default scheme D in the context of reasoning from an arbitrary
set of premises of Σ involves a subtlety. If Σ itself entails consequences that are
unwanted, then the requirement �ϕ doesn't introduce unwanted consequences�
should be understood as �ϕ doesn't entail any unwanted consequence, unless
this unwanted consequence is already entailed in Σ�. This observation, given
the set Γ of all unwanted consequences, leads to the formalization of D by the
following postulate:

Assume ϕ if and only if, for every γ ∈ Γ, Σ ∪ {ϕ} does not entail γ
unless Σ does.

We will refer to it as the Γ-default assumption, and denote the set of all ϕ
that satisfy the above de�nition by DAΓ(Σ).

The consistency of DAΓ(Σ) seems to be a serious problem that is reportedly
common to all kinds of default rules. In particular, it may happen that each
of a pair ϕ, ψ of inconsistent sentences separately does not add any unwanted
consequences to Σ, and then both of them are included in DAΓ(Σ), making
DAΓ(Σ) inconsistent. In this paper, we have managed to avoid this problem by
restricting both Σ and DAΓ(Σ) to sentences which do not reveal such patho-
logical behavior. Most notably, clauses, or universally quanti�ed sentences, do
not cause this type of a problem for appropriately chosen Γ. As a result of
this precaution, the instances of the Γ-default assumption which are studied
here may be treated as rules of inference and used whenever applicable, with-
out contradicting the other uses of the same instance of Γ-default assumption.
This desirable proof-theoretic property frees us from �xed-point equations which
seem inevitable for the default rules that do not possess this feature.
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Consistency of DAΓ(Σ) creates the possibility of characterizing it in terms
of its models, which is an object of our primary concern. A question which we
will attempt to address to the fullest extent possible is:

Given Γ, what semantics assigns to every Σ from the domain of DAΓ

the class of �rst-order models of DAΓ(Σ)?

We will seek candidates for such semantics among models of Σ which are
�nest with respect to certain preference relations (called re�nements in this
paper) that are characteristic for certain instances of Γ. This approach leads to
a number of completeness results of the form:

ϕ ∈ DAΓ(Σ) if and only if every �nest model of Σ is a model of ϕ.

The instances of Γ we investigate in this paper are the sets of clauses positive
beyond equality, clauses positive in equality, ground clauses, the intersections
of these sets, and the set of clauses negative in equality. The corresponding
minimal semantics are: predicate-minimal semantics, discriminant semantics,
domain-minimal semantics, and their combinations. For example, if Γ consists
of all positive ground clauses then DAΓ is ∀-complete with respect to minimal
Herbrand (i.e., predicate-minimal, domain-minimal, and discriminant) seman-
tics; a result whose extreme instances (e.g., no = in the language) were known
for some time in a weaker form. It is our hope that our uniform analysis of
these cases will clarify the actual relationships between di�erent patterns of
model minimization described in the literature.

2 Prerequisites from Logic and Algebra

We apply the standard terminology and notation of �rst-order model theory, a
good account of which can be found in [Bar78], Chap. A2. We restrict ourselves
to a �rst-order language L with logical connectives ∧ (and ), ∨ (or ), ¬ (not ), ∀
(for all ) and ∃ (there exists), and treat all other connectives as abbreviations.
In addition to predicates, L contains constants and the equality symbol =1, and
may contain function symbols. We identify L with the set of its all formulas.
To avoid confusion with connectives of L, we apply beyond L the informal
quanti�ers

∧
and

∨
as abbreviations for for all and there exists. For instance,∧

ϕ∈L
∀xϕ ∈ L

means:

For every formula ϕ of L, ∀xϕ is a formula of L.

A formula ϕ is atomic if and only if no logical connective appears in ϕ. For
example, x = f(d) is an atomic formula. A ∀-formula is a formula of the form

1The case of L without = is addressed in Section 6.
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∀x1∀x2...∀xnϕ (abbreviated as ∀~xϕ), where ϕ is quanti�er-free. Similarly, an
∃-formula is a formula of the form ∃x1∃x2...∃xnϕ (abbreviated as ∃~xϕ), where
ϕ is quanti�er-free. A sentence is a formula without free (i.e., unquanti�ed)
variables. Atom denotes the set of all atomic sentences of L; QF denotes the
set of all quanti�er-free sentences of L; and ∀ and ∃, when used in appropriate
context, denote the set of all ∀-sentences and the set of all ∃-sentences of L,
respectively.

∀-sentences seem to play a very important role in arti�cial intelligence. In
particular, every clause is logically equivalent to a ∀-sentence. Also, every ∀-
sentence is logically equivalent to a �nite set of clauses. Therefore, in this paper
∀-sentences are given special attention. Moreover, we identify sets of clauses
with subsets of ∀, and sets of ground clauses with subsets of QF. Obviously,
this can be done without loss of generality.

SL denotes the class of all �rst-order structures for L. We usually denote its
elements by A,B,M,N , ..., and their respective domains by A,B,M,N, ...,. If
F is a function symbol of L then FM denotes the corresponding function inM.
Analogously, RM denotes the relation inM corresponding to the predicate R.
The satisfaction relation is denoted by |=, so thatM |= ϕ[s] means that formula
ϕ is satis�ed in structureM by assignment s on its free variables (formally, s is
a function from variables of L into the domain M ofM). If ϕ is satis�ed inM
by every assignment s thenM |= ϕ is used instead ofM |= ϕ[s]. In such a case
we say that ϕ is true inM. If ϕ is a sentence of L then for every assignment s
in M , M |= ϕ[s] is synonymous with M |= ϕ. We use M ⊆ N , to mean that
M is a substructure of N , if and only if M ⊆ N , and for every predicate or
function symbol F of L, FM = FN �M , where �� � means �restricted to�.

A theory Σ in L is a set of sentences of L. Here we usually denote formulas
by lower-case Greek letters, and theories by upper-case Greek letters. We write
M |= Σ to express that for every ϕ ∈ Σ, M |= ϕ. M |= Σ means that all
elements of Σ are true in M, that is, the structure M is a model of Σ. We
denote the class of all models of Σ by Mod(Σ). We make an implicit use of
the completeness theorem of �rst-order logic by applying Σ ` ϕ in the sense
Mod(Σ) ⊆Mod(ϕ), so that Σ ` ϕ means that ϕ is true in every model of Σ. If
f is a function from subclasses of SL into subclasses of SL then `f is a relation
de�ned by:∧

Σ⊆L

∧
ϕ∈L

Σ `f ϕ if and only if Mod(Σ) ∩ f(Mod(Σ)) ⊆Mod(ϕ). (2)

Σ `f ϕ means that ϕ is true in all models of Σ that are in f(Mod(Σ)), but not
necessarily in all models of Σ. Relations ` and `f are called entailments.

We use Cn(Σ) to denote the set {ϕ | Σ ` ϕ} of all �rst-order consequences
of Σ within the language L. We say that Σ1 is logically equivalent to Σ2 if and
only if Cn(Σ1) = Cn(Σ2), or equivalently, if and only ifMod(Σ1) = Mod(Σ2).
Moreover if Γ is a set of sentences of L then we use ΣΓ to denote the set
Cn(Σ) ∩ Γ. In particular, ΣL coincides with Cn(Σ).
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The notion of relative positiveness and negativeness are the key concepts
which allow for proper articulation of default assumptions that are ∀-complete
with respect to various versions of minimal semantics.

Let < be a set of predicates of L. Our intention is that < contains all
predicates which are being minimized, while the predicates not in < remain
constant. A formula is positive in a symbol R if and only if it does not contain
an appearance of R in a scope of a negation2. It is positive if and only if it is
positive in every predicate in < and in the equality symbol =. A formula is
negative in R if and only if it is a negation of a formula which is positive in R.
In this paper, Pos{=}′ denotes the set of all ∀-sentences which are positive in all
predicates in < (symbol � ′ � in Pos{=}′ indicates that = is excluded from the
requirement of positiveness), Pos{=} denotes the set of all ∀-sentences which
are positive in =, Pos (the intersection of Pos{=}′ and Pos{=}) denotes the
set of all positive ∀-sentences, and Neg{=} denotes the set of all ∀-sentences
which are negative in =. Let us note that elements of Pos may contain negative
occurrences of predicates from beyond <.

A conservative homomorphism onM into N is a mapping f : M → N such
that for each atomic formula ϕ without an occurrence of the symbol =, and
assignment s in M ,

M |= ϕ[s] i� N |= ϕ[s ◦ f ],

and for each term t and assignment s in M ,

f(tM(s)) = tN (s ◦ f),

where ◦ is the composition operator. Conservative homomorphism f onM de-
�nes unambiguously the structure N such that f : M

on→ N . We denote such a
structure by fM. Structure M is isomorphic with structure N if and only if
there is a one-to-one conservative homomorphism fromM onto N . Isomorphic
structures are indistinguishable in the sense that thy possess the same math-
ematical properties. In particular, they satisfy exactly the same formulas of
L. For these reasons we treat any pair of isomorphic structures as if they were
equal.

If ∝ is a binary relation on a class S then a subclass K of S is called upward
∝-closed if and only if M ∈ K and M ∝ N imply N ∈ K. The upward ∝-
closure Clo↑∝(K) of K is de�ned as the least upward ∝-closed class containing
K as a subset. If ∝ is a re�exive and transitive relation then

Clo↑∝(K) = {N ∈ S |
∨
M∈K

M∝ N}. (3)

Class K is called ∝-dense in class J if and only if∧
M∈J

∨
N∈K∩J

N ∝M. (4)

2The concept of positiveness is purely syntactic, so that a non-positive formula may be log-

ically equivalent to a positive one; similarly, a non-atomic formula may be logically equivalent

to an atomic formula.
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If ∝ is a re�exive and transitive relation then class K is ∝-dense in class J if
and only if J ⊆ Clo↑∝(K ∩ J). If K is ∝-dense in J and K ∩ J is ∝-dense in I
then K is ∝-dense in I, also.

Transitive and re�exive closure of a relation∝ is denoted by∝∗. If∝1 and∝2

are binary relations on S then ∝1 ◦ ∝2 denotes their composition, and ∝1 + ∝2

denotes their combination, that is, the relation (∝1 ∪ ∝2)∗. If ∝1 and ∝2 are
re�exive and transitive then ∝1 + ∝2= (∝1 ◦ ∝2)∗. Let us note that ∝1 ◦ ∝2

is not necessarily a transitive relation, even though ∝1 and ∝2 are. However,
if ∝1, ∝2 and ∝1 ◦ ∝2 are re�exive and transitive then ∝1 + ∝2=∝1 ◦ ∝2;
the converse is true as well. We call ∝ a partial order if, in addition to being
re�exive and transitive, it is antisymmetric, that is, it satis�es the following
postulate: ∧

N,M∈S

N ∝M andM∝ N implies N =M. (5)

3 Model Re�nements

It turns out that appropriately chosen preference relations, which we call here
re�nements, constitute semantical counterpart of Γ-default assumption. The
purpose of a re�nement is to modify a modelM of a set of sentences Σ to another
model N of Σ, which satis�es more consequences of an instance of Γ-default
assumption in question and, in e�ect, better approximates the reality that Σ
under this default assumption is supposed to describe. Consequently, the mostly
preferred models of Σ which cannot be further re�ned will provide DAΓ(Σ) with
adequate semantics. In Sections 4 and 5 we will determine which re�nements are
appropriate matches for selected instances of the Γ-default assumption. Here,
we de�ne re�nements as binary relations between �rst-order structures of SL,
and state their basic properties.

A re�nement, usually denoted by ∝ (possibly with subscripts), is a partial
order on the class SL of �rst-order structures for L. N ∝M expresses the fact
that N is a re�nement of M. Given K ⊆ SL, the class fin∝(K) of ∝-�nest
structures in K is de�ned by

fin∝(K) = {M ∈ K |
∧
N∈K

(N ∝M ⊃M = N )}. (6)

The entailment ` is incomplete with respect to the ∝-�nest semantics. In-
deed, a sentence ϕ that is not provable from Σ by means of `, or in other
words, is false in some elements of Mod(Σ), may be true in all elements of
fin∝(Mod(Σ)). This fact motivates our interest in the entailment `fin∝ , de-
noted for simplicity by `∝, which by de�nition (2) is complete with respect to
the ∝-�nest semantics. Since fin∝(K) always is a subset of K, `∝ is charac-
terized by the following instance of (2):

Σ `∝ ϕ i� fin∝(Mod(Σ)) ⊆Mod(ϕ). (7)
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Σ `∝ ϕ means that ϕ is true in all ∝-�nest models of Σ. We call `∝ a re�ned
entailment. Of course, if Σ ` ϕ then Σ `∝ ϕ, but the converse is not necessarily
true.

A subclass K of SL is called ∝-�at if and only if,∧
M,N∈K

M∝ N impliesM = N . (8)

Obviously, by (6), every class of the form fin∝(K) is �at, but not vice versa.

We focus on the following instances of the re�nement ∝. It is a matter of
routine inspection to check that all these instances are partial orders.

3.1 Predicate Minimization

The �rst instance of ∝ is the relation ≤ of enlargement (introduced in [Lyn59b])
in the class SL of �rst-order structures for L. It is de�ned as follows:

(M ≤ N ) if and only if (M = N, and for every function symbol
F of L, FM = FN , and for every predicate symbol P not in <,
PM = PN , and for every predicate symbol R in <, RM ⊆ RN ).

Numerous variants of ≤-�nest semantics turned out to be particularly use-
ful in deductive data bases, logic programming, and other areas of arti�cial
intelligence. One of the applications of this semantics is the de�nition of the
transitive closure TCR of a binary relation R. Although TCR is generally not
�rst-order de�nable, the following sentence de�nes TCR in its ≤-�nest mod-
els: (∀x)(∀y)(R(x, y) ⊃ TCR(x, y)) ∧ (∀x)(∀y)(∀z)((TCR(x, y) ∧ TCR(y, z)) ⊃
R′(x, z)), where the only predicate minimized by ≤ is TCR. Consequently, using
minimization one can de�ne relational semantics of programs.

Following generally accepted convention, we call ≤-�nest models predicate-
minimal models.

3.2 Domain Minimization

The very relation ⊆ between �rst-order structures comprises our second instance
of re�nement. It formalizes the Ockham's razor principle in this sense, that the
domains of ⊆-�nest structures consist only of necessary individua, namely of
interpretations of constant3 terms of the language L. We call ⊆-�nest structures
domain-minimal structures. Not every consistent set of sentences has a model
being a domain-minimal structure. For example, {∃xP (x)} ∪ {¬P (t) | t is a
constant term of L} has not. However, for every theory Σ ⊆ ∀, each domain-
minimal substructure of a model of Σ is a model of Σ.

Domain-minimal structures are also known under the name domain-closed
structures.

3i.e., with no occurrences of variables
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3.3 Gluing

As an alternative for ⊆, one may consider the relation E of projection (intro-
duced by Lyndon in [Lyn59b])de�ned by:

M E N i� there exists a conservative homomorphism f such that
M = fN .

The nature of the re�nement E lies in gluing together certain elements of
the domain of a model if they satisfy the same atomic and negated atomic
sentences of L. Therefore, E may be used to minimize the domains of �rst-
order structures, albeit, in a di�erent sense than ⊆. For instance, in a language
with one unary predicate P and three constants a, b, and c, each E-�nest
model of {P (a),¬P (b),¬P (c)} has the domain consisting of two elements: one
to interpret a and another to interpret b and c.

3.4 Discrimination

Oddly enough, something quite converse to gluing E, namely discrimination,
seems to be a matter of interest in deductive databases and logic programming.
Discrimination may be de�ned as the inverse of gluing restricted to elements
of the domain which are values of the constant terms of L. We denote the
relation of discrimination by I. MIN means that there is a conservative
homomorphism f of M onto N , such that f(m1) = f(m2) holds only if, for
some constant terms t1 and t2 of L, m1 = tM1 , and m2 = tM2 . In particular,

MIN implies
∨
A⊆M

AIM. (9)

Models which are I-�nest are called discriminant, or, in the extreme case, when
every two non-identical constant terms are assigned di�erent values, they are
called strongly discriminant. For instance, if f is a function symbol and c is a
constant of L then each strongly discriminant structure satis�es ¬(f(c) = c).
Discriminant models constitute a semantic counterpart of the so called unique-
names assumption.

The restriction to strongly discriminant semantics is necessary for the va-
lidity of many published completeness proofs of negation-as-failure and similar
procedures. This is most likely the reason of popularity of discriminant mod-
els. Of course, if Σ contains occurrences of the equality symbol, for instance, a
sentence a = b, there may be no strongly discriminant models of Σ. However,
we will show in subsection 3.6 that for every consistent Σ ⊆ ∀, there are always
discriminant models of Σ, which are strongly discriminant if = does not occur
in Σ.

3.5 Combinations

It turns out that the most interesting in applications are certain combinations
of the above instances of ∝. For example, the combination of ⊆ and I leads to
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the concept of the Herbrand (i.e., domain-minimal and discriminant) structure,
or, in the extreme case to strongly Herbrand (i.e., domain-minimal and strongly
discriminant) structure. The combination of the three re�nements: ⊆, I, and ≤
yields in the extreme case the concept of a minimal strongly Herbrand structure.
This notion plays a fundamental role in model theory for deductive databases
and logic programming.

Combinations of re�nements are the central point of our interest. They are
the subject of systematic study in Section 5.

3.6 Densly Founded Theories

If certain theories have models which cannot be re�ned to ∝-�nest models than
the entailment `∝ may reveal an irregular behavior. In particular, if a consistent
theory Σ has no ∝-�nest models at all (e.g., in the language with a unary
predicate symbol N , the usual inductive de�nition of natural numbers with
the postulate �N(0)� being replaced by �∃xN(x)�, has no predicate-minimal
models) then Σ entails false, which is decidedly an unwanted consequence. This
troubled situation cannot happen if every Σ ⊆ ∀ is ∝-densly founded, that is,
if class fin∝(Mod(Σ)) is ∝-dense in Mod(Σ). Fortunately, this is the case for
all the re�nements considered in this paper.

Lemma 3.6.1 For every Σ ⊆ ∀,

i. fin≤(Mod(Σ)) is ≤-dense in Mod(Σ).

ii. fin⊆(Mod(Σ)) is ⊆-dense in Mod(Σ).

iii. finE(Mod(Σ)) is E-dense in Mod(Σ).

iv. finI(Mod(Σ)) is I-dense in Mod(Σ).

Proof. (i) was proven in [BS84]. (ii). Because every �rst-order struc-
ture contains a domain-minimal structure as a substructure, the density of
fin⊆(Mod(Σ)) in Mod(Σ) is secured by the �o±�Tarski Theorem (see [Kei78],
thm 3.11). (iii) was proven in [Suc93], lem. 7.4. (iv). LetK = {NIA | N |= Σ},
and let A1 J ...JAi J ... , i ∈ I, be a chain in K. Let E(M) denote the set of
all equational atomic sentences of L satis�ed byM. There exists B ∈ SL, with
B IA and E(B) =

⋂
i∈I E(Ai). Of course, B IAi for each i ∈ I. Let fi be

a conservative homomorphism from B onto Ai. An inductive argument shows
that for every quanti�er-free formula ϕ of L, and every assignment s in B,∨

i∈I

∧
j,k∈I:j,k>i

Aj |= ϕ[s ◦ fj ] i� Ak |= ϕ[s ◦ fk]

(the case of atomic and negated atomic equational formula follows from the
de�nition of B, the case of atomic and negated atomic predicate formula follows
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from the conservativeness of fj , the cases of ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2 are routine).
From this we conclude, by induction again,

B |= ϕ[s] i�
∨
i∈I

∧
j∈I:i<j

Aj |= ϕ[s ◦ fj ]

Hence, for every sentence ϕ ∈ ∀,

B |= ϕ i�
∨
i∈I

∧
j∈I:i<j

Aj |= ϕ.

Since
∧
i∈I Ai |= Σ, we conclude B |= Σ. By the Kuratowski - Zorn Lemma

(cf. [Jec78], thm 4.1), K contains a minimal (with respect to I) element M.
Obviously,MIA andM∈ finI(Mod(Σ)). Hence (iv). �

Lemma 3.6.1 is surprisingly strong. For instance, (iv) implies the compact-
ness theorem of ∀-fragment of �rst-order logic. In Section 5 we will generalize
Lemma 3.6.1 over combinations of re�nements.

4 Simple Preservation Properties

Let Γ be a set of ∀-sentences of L. The Γ-default assumption DAΓ introduced
in Section 1 is formally de�ned as a consequence operation from subsets of ∀
into subsets of ∀, given by:∧

Σ⊆∀

∧
ϕ∈L

ϕ ∈ DAΓ(Σ) i� ϕ ∈ ∀ and (Σ ∪ {ϕ})Γ = ΣΓ. (10)

DAΓ assumes, by default, a clause ϕ if and only if ϕ does not introduce new
Γ-consequences to Σ. For ϕ ∈ ∀, scheme (10) generalizes (1) over in�nite Γ's;
one can check that if Γ is �nite then a working instance of (1) can be obtained
by putting Γ0 = ΣΓ.

It turns out that those Γ's, whose elements' truthfulness is upward ∝-
preserved, yield instances of Γ-default assumption which are ∀-complete with
respect to the re�ned entailments `∝.

De�nition 4.1 We call a set Γ of sentences of L a complete preservation prop-
erty with respect to the re�nement ∝, in abbreviation: CPP(Γ, α), if and only
if, ∧

Σ⊆∀

Mod(ΣΓ) = Clo↑∝(Mod(Σ)). (11)

�

In other words, CPP(Γ,∝) means that for every Σ ⊆ ∀,Mod(ΣΓ) is the least
upward∝-closed class containingMod(Σ) as a subset. Because we assumed that
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re�nements are partial orders, in particular re�exive and transitive, CPP(Γ,∝)
holds if and only if for every Σ ⊆ ∀ and every A ∈ SL,

A |= ΣΓ i�
∨
M∝A

M |= Σ. (12)

CPP(Γ,∝) implies that any ∀-axiomatizable subclass of SL is upward ∝-closed
if and only if it is axiomatizable by a subset of Γ. In particular, for every
ϕ ∈ Γ, ifM |= ϕ andM∝ N then N |= ϕ. Thus ∝ preserves the truthfulness
of sentences of Γ. Moreover, for every sentence ϕ of L whose truthfulness is
preserved under ∝ there is a �nite Γ0 ⊆ Γ with ` ϕ ≡ ∧Γ0. In this sense Γ is a
complete preservation property.

The notion of complete preservation property constitutes a fundamental con-
cept which allows us to establish the ∀-completeness of the Γ-default assumption
with respect to re�ned entailment `∝.

The Completeness Theorem 4.2 Assume that CPP(Γ,∝) holds. For every
∝-densly founded Σ ⊆ ∀ and ϕ ∈ ∀,

Σ `∝ ϕ i� ϕ ∈ DAΓ(Σ).

Proof. We show that under these assumptions, Σ `∝ ϕ if and only if (Σ∪{ϕ})Γ =
ΣΓ. Indeed, Σ `∝ ϕ i� [by de�nition (7) of `∝] fin∝(Mod(Σ)) ⊆Mod(ϕ) i�
Mod(ϕ) is ∝-dense in fin∝(Mod(Σ)) i� [by ∝-densly foundedness of Σ, that
is by ∝-density of fin∝(Mod(Σ)) in Mod(Σ)] Mod(ϕ) is ∝-dense in Mod(Σ)
i� [by (3) and re�exiveness and transitivity of ∝] Mod(Σ) ⊆ Clo↑∝(Mod(Σ) ∩
Mod(ϕ)) i� Mod(Σ) ⊆ Clo↑∝(Mod(Σ ∪ {ϕ})) i� [by CPP(Γ,∝) and (11)]
Mod(Σ) ⊆Mod((Σ∪{ϕ})Γ). Observation that ΣΓ ⊆ (Σ∪{ϕ})Γ always holds
completes the proof. �

We demonstrated in Section 3 (Lemma 3.6.1) that all the instances of ∝
discussed there satis�ed the requirement that ∀-theories are ∝-densly founded.
Here, we establish their complete preservation properties.

Lemma 4.3 The following complete preservation properties hold:

i. CPP (Pos{=}′ ,≤),

ii. CPP (QF,⊆),

iii. CPP (Neg{=},E),

iv. CPP (Pos{=},I),

Proof. (i) We have to demonstrate that∧
Σ⊆∀

Mod(ΣPos{=}′ ) = Clo↑≤(Mod(Σ)).
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Because ≤ is a transitive and re�exive relation, it su�ces to show that for every
Σ ⊆ ∀ and every A ∈ SL,

A |= ΣPos{=}′ i�
∨
M≤A

M |= Σ.

This has been done in [Suc93], cor. 3.6.

(ii) We have to demonstrate that∧
Σ⊆∀

Mod(ΣQF ) = Clo↑⊆(Mod(Σ)).

Because ⊆ is a transitive relation, it su�ces to show that for every Σ ⊆ ∀ and
every A ∈ SL,

A |= ΣQF i�
∨
M⊆A

M |= Σ.

(⇐) Assume A 6|= ΣQF . Take any ϕ ∈ ΣQF with A 6|= ϕ, that is, A |= ¬ϕ, and
anyM⊆ A. Of course,M |= ¬ϕ, that is,M 6|= ΣQF .
(⇒) Let A |= ΣQF and let B be a domain-minimal substructure of A. We show
that B |= Σ. Suppose not, that is, let ϕ ∈ Σ be such that B 6|= ϕ. Because Σ ⊆ ∀,
ϕ has the form of ∀~xψ(~x), where ψ(~x) is quanti�er-free. We have B |= ∃~x¬ψ(~x).
Since B is a domain-minimal structure, there exists a sequence ~c of constant
terms of L with B |= ¬ψ(~c). Because B ⊆ A, we obtain A |= ¬ψ(~c). On the
other hand, ψ(~c) ∈ ΣQF , therefore A |= ψ(~c), a contradiction.

(iii) We have to demonstrate that∧
Σ⊆∀

Mod(ΣNeg{=}) = Clo↑E(Mod(Σ)).

Because E is a transitive and re�exive relation, it su�ces to show that for every
Σ ⊆ ∀ and every A ∈ SL,

A |= ΣNeg{=} i�
∨
MEA

M |= Σ.

This has been done in [Suc93], cor. 7.2.

(iv) Obviously, Clo↑I(Mod(Σ)) ⊆ Clo↑I(Mod(Σ)). Clo↑I(Mod(Σ)) ⊆ [by

(9)] Clo↑I(Clo↑⊆(Mod(Σ))) = Clo↑I(Mod(Σ)). The proof of∧
Σ⊆∀

Mod(ΣPos{=}) = Clo↑I(Mod(Σ))

is symmetric to (iii). Hence, (iv).
�

Now, Theorem 4.2 yields automatically the appropriate ∀-completeness re-
sults.
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Theorem 4.4 For every Σ ⊆ ∀ and every ϕ ∈ ∀,

i. Σ `≤ ϕ i� ϕ ∈ DAPos{=}′ (Σ)

ii. Σ `⊆ ϕ i� ϕ ∈ DAQF (Σ)

iii. Σ `E ϕ i� ϕ ∈ DANeg{=}(Σ)

iv. Σ `I ϕ i� ϕ ∈ DAPos{=}(Σ)

Proof by application of Lemmas 3.6.1 and 4.3, and Theorem 4.2 �

The above theorem makes it clear that the Pos{=}′ -default assumption ex-
presses the predicate circumscription, the QF-default assumption expresses the
domain closure axiom, and the Pos{=}-default assumption expresses the unique-
names assumption.

DAPos{=}′ was �rst introduced as an instance of operation cwaS , and proven
complete with respect to entailment `≤ in [Suc89].

5 Composed Preservation Properties

In this section, we investigate combinations of re�nements. We prove that the
resulting ∀-complete default assumptions are straightforward combinations of
the simple ones.

We start with technical lemmas (Lemmas 5.1 - 5.8) which yield a handy tool
for surgically clean analysis of the following combinations of instances of ∝ that
were introduced in Sections 3 and 4:

� simultaneous predicate minimization and domain minimization (we call it
a total minimization),

� predicate minimization with discrimination,

� domain minimization with discrimination, and

� total minimization with discrimination.

Lemma 5.1 Assume that ∝1 ◦ ∝2 is transitive. Then for every K ⊆ SL,

Clo↑∝2
(Clo↑∝1

(K)) = Clo↑∝1
(Clo↑∝2

(Clo↑∝1
(K))). (13)

Proof. It su�ces to show that Clo↑∝2
(Clo↑∝1

(K)) is upward ∝1-closed. Let
M∈ Clo↑∝2

(Clo↑∝1
(K)), andM∝1 N . By the re�exiveness of ∝2 we getM∝1

◦ ∝2 N . By (3) we obtain
∨
A,B∈KA ∝1 B ∝2 M, that is,

∨
A∈KA ∝1 ◦ ∝2 M.

The transitivity of ∝1 ◦ ∝2 yields
∨
A∈KA ∝1 ◦ ∝2 N , that is, by (3) again,

N ∈ Clo↑∝2
(Clo↑∝1

(K)). Thus Clo↑∝2
(Clo↑∝1

(K)) is upward ∝1-closed. �
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We say that sets Γ1 and Γ2 possess the intersection property if and only if
every subset of Γ1 logically equivalent to a subset of Γ2 is logically equivalent
to a subset of Γ1 ∩Γ2. For instance, one can show that the sets ∀ and ∃ possess
the intersection property (note that ∀ ∩ ∃ = QF).

The following lemma is interesting in its own right since it generalizes classic
results of Craig [Cra57] and Lyndon [Lyn59a].

Interpolation Lemma 5.2 Assume that CPP(Γ1,∝1) and CPP(Γ2,∝2) hold,
∝1 ◦ ∝2 is a partial order, and Γ1 and Γ2 posses the intersection property. Then∧

Σ⊆∀

Mod(ΣΓ1∩Γ2
) = Mod((ΣΓ1

)Γ2
). (14)

Proof. ΣΓ1∩Γ2 = Cn(Σ) ∩ Γ1 ∩ Γ2 ⊆ Cn(Cn(Σ) ∩ Γ1) ∩ Γ2 = (ΣΓ1)Γ2 .
Hence, Mod((ΣΓ1)Γ2) ⊆ Mod(ΣΓ1∩Γ2). Therefore, it su�ces to prove that
Mod(ΣΓ1∩Γ2

) ⊆ Mod((ΣΓ1
)Γ2

). Indeed, Mod((ΣΓ1
)Γ2

) = [by CPP(Γ2,∝2)
and (3)] Clo↑∝2

(Mod(ΣΓ1
)) = [by CPP(Γ1,∝1) and (3)] Clo↑∝2

(Clo↑∝1
(Mod(Σ)))

= [by Lemma 5.1] Clo↑∝1
(Clo↑∝2

(Clo↑∝1
(Mod(Σ)))) = [by similar argument]

Mod(((ΣΓ1)Γ2)Γ1). Because ((ΣΓ1)Γ2)Γ1 ⊆ Γ1 and (ΣΓ1)Γ2 ⊆ Γ1, the intersec-
tion property of Γ1 and Γ2 yields Π ⊆ Γ1 ∩Γ2 with Mod((ΣΓ1)Γ2) = Mod(Π).
Since Mod(Σ) ⊆ Mod((ΣΓ1

)Γ2
), we have Mod(Σ) ⊆ Mod(Π), therefore

Π ⊆ ΣΓ1∩Γ2
. Hence, Mod(ΣΓ1∩Γ2

) ⊆ Mod(Π). Thus Mod(ΣΓ1∩Γ2
) ⊆

Mod((ΣΓ1
)Γ2

). �

To see the �interpolation� in Lemma 5.2 let us note that (14) can be equiv-
alently expressed by:∧

Π⊆Γ1

∧
ϕ∈Γ2

(Π ` ϕ implies
∨

Θ⊆Γ1∩Γ2

(Π ` Θ and Θ ` ϕ)),

where Π ` Θ is an abbreviation for
∧
ϑ∈Θ Π ` ϑ.

Now, we prove that CPP is preserved under combinations of re�nements.

Lemma 5.3 Assume that CPP(Γ1,∝1) and CPP(Γ2,∝2) hold, ∝1 ◦ ∝2 is a
partial order, and Γ1 and Γ2 have the intersection property. Then CPP(Γ1 ∩
Γ2,∝1 + ∝2) holds.

Proof. We must prove that∧
Σ⊆∀

Mod(ΣΓ1∩Γ2
) = Clo↑∝1+∝2

(Mod(Σ)). (15)

Because ∝1 + ∝2 is re�exive and transitive, it su�ces to demonstrate that for
every Σ ⊆ ∀ and A ∈ SL,

A |= ΣΓ1∩Γ2
i�

∨
M∝1+∝2A

M |= Σ. (16)

By Lemma 5.2, Mod(ΣΓ1∩Γ2) = Mod((ΣΓ1)Γ2). Therefore, A |= ΣΓ1∩Γ2 i�
A |= (ΣΓ1)Γ2 i� [because of CPP (Γ1,∝1), CPP (Γ2,∝2), and (3)]
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A ∈ Clo↑∝2
(Clo↑∝1

(Mod(Σ))) i� [because of re�exiveness and transitivity of ∝2]∨
N∝2AN ∈ Clo

↑
∝1

(Mod(Σ)) i� [because of transitivity of ∝1]
∨
N∝2A

∨
M∝1N

M |= Σ i�
∨
M∝1◦∝2AM |= Σ i� [because of transitivity of ∝1 ◦ ∝2, ∝1 + ∝2

= ∝1 ◦ ∝2]
∨
M∝1+∝2AM |= Σ. Hence (16). �

Here are the rest of the technicalities.

Lemma 5.4 For every upward ∝1 + ∝2-closed class K ⊆ SL,

fin∝1+∝2
(K) = fin∝1

(K) ∩ fin∝2
(K). (17)

Proof. The case of (⊆) follows from fin∝(K) ⊆ K.
(⊇) AssumeM∈ fin∝1

(K)∩fin∝2
(K). Let N ∈ K satisfy N ∝1 + ∝2 M,

with N 6= M. There is A ∈ SL, A 6= M, with N ∝1 + ∝2 A ∝i M, where
i ∈ {1, 2}. By upward∝1 + ∝2-closedness ofK,A ∈ K. Hence,M 6∈ fin∝i

(K),
a contradiction. �

Lemma 5.5 For every K ⊆ SL,

fin∝(K) = fin∝(Clo↑∝(K)). (18)

Proof. (⊆) Assume M ∈ fin∝(K) and N ∈ Clo↑∝(K), with N ∝ M. There
is A ∈ K with A ∝ N . The transitivity of M yields A ∝ M. ∝-�nestness of
M gives A =M. Therefore, both N ∝ M andM ∝ N hold. Because ∝ is a
partial order, (5) yields N =M. Hence,M∈ fin∝(Clo↑∝(K)).

(⊇) AssumeM∈ fin∝(Clo↑∝(K)) and N ∈ K, with N ∝M. In particular,
N ∈ Clo↑∝(K), therefore ∝-�nestness of M yields N = M. Hence, M ∈ K,
andM∈ fin∝(K). �

Lemma 5.6 For every K ⊆ SL, fin∝(K) is ∝-dense in K i� fin∝(K) is ∝-
dense in Clo↑∝(K).

Proof follows from fin∝(K) ⊆ K ⊆ Clo↑∝(K) and ∝-density of K in
Clo↑∝(K). �

Lemma 5.7 For every K ⊂ SL, fin∝(K) is ∝-dense in K i� fin∝(Clo↑∝(K))
is ∝-dense in Clo↑∝(K).

Proof by direct application of Lemmas 5.5 and 5.6. �

To show that the dense foundedness of ∀-theories is preserved under com-
binations of re�nements we need the following property of antipreservation.
Re�nement ∝2 is said to be antipreserving for re�nement ∝1 if and only if∧

A,B, C∈SL

A ∝2 B ∝1 C and A ∝1 C imply A = B. (19)

(To see the above concept from a better perspective, one can equivalently start
from this de�nition: ∝2 is preserving for ∝1 i� ∝2 ◦ ∝1⊆∝1, that is,∧

A,B, C∈SL

A ∝2 B ∝1 C implies A ∝1 C,

and then use the pre�x �anti�, as in the de�nition (5) of �antisymmetric�.)
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Lemma 5.8 Assume that ∝2 is antipreserving for ∝1, ∝1 ◦ ∝2 is a partial
order, fin∝1(K) is ∝1-dense in K, and fin∝2(K) is ∝2-dense in K. Then
fin∝1+∝2

(K) is ∝1 + ∝2-dense in K.

Proof. By Lemma 5.7, we may assume that K is upward ∝1 + ∝2-closed.
Therefore, by Lemma 5.4, it su�ces to show that

fin∝1
(K) ∩ fin∝2

(K) is ∝1 + ∝2 -dense in K. (20)

LetM∈ K, A ∈ fin∝2(K) with A ∝2 M [it exists since fin∝2(K) is ∝2-dense
in K], B ∈ fin∝1

(K) with B ∝1 A [it exists because fin∝1
(K) is ∝1-dense in

K], and N ∈ K with N ∝2 B. Because ∝1 + ∝2=∝1 ◦ ∝2, N ∝2 B ∝1 A yields
C ∈ SL, with N ∝1 C ∝2 A. Since K is upward ∝1-closed and N ∈ K, we see
that C ∈ K. Therefore, by A ∈ fin∝2(K), (6) yields C = A. Hence, N ∝1 A.
Since N ∝2 B ∝1 A holds and ∝2 is antipreserving for ∝1, (19) gives N = B.
Hence, B ∈ fin∝2

(K), that is, B ∈ fin∝1
(K) ∩ fin∝2

(K), which gives (20). �

None of the assumptions of Lemma 5.8 may be dropped. If fin∝i(K) is not
∝i-dense in K then fin∝i+∝i

(K) is not ∝i + ∝i-dense in K. If ∝1 + ∝2 is
not a partial order then letting ∝=∝1 + ∝−1

2 will produce fin∝(K) which may
not be ∝-dense in K. If ∝2 is not antipreserving for ∝1 then Fig. 1 depicts a
counterexample to the lemma's thesis.

Figure 1: A counterexample.

The relation ∝1 is represented in Fig. 1 by solid arrows, that is, M ∝1 N
holds if and only if there is a solid directed path from N to M (this is not a
misprint). Similarly, the relation ∝2 is represented by dotted arrows. Put K =
{Ai | i ∈ ω} ∪ {Bi | i ∈ ω}. We have fin∝1(K) = {Bi | i ∈ ω}, and fin∝2(K) =
{Ai | i ∈ ω}. One can easily check that all the assumptions of Lemma 5.8 are
met, except that ∝2 is preserving for ∝1, that is, ∝2 is not antipreserving for
∝1 (∝1 is antipreserving for ∝2, though). Because fin∝1+∝2

(K) is empty, it
cannot be ∝1 + ∝2-dense in nonempty K.

After all this, the proof of the following fundamental result becomes an easy
exercise.

The Completeness Theorem 5.9 Assume that CPP(Γ1,∝1) and
CPP(Γ2,∝2) hold, ∝1 ◦ ∝2 is a partial order, ∝2 is antipreserving for ∝1, and
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Γ1 and Γ2 have the intersection property. Then for every ∝1- and ∝2-densly
founded Σ ⊆ ∀ and for every ϕ ∈ ∀,

Σ `∝1+∝2 ϕ i� ϕ ∈ DAΓ1∩Γ2(Σ). (21)

Proof. Lemma 5.3 yields CPP(Γ1∩ Γ2,∝1 + ∝2). Lemma 5.8 gives ∝1 + ∝2-
densly foundedness of every ∝1- and ∝2-densly founded Σ ⊆ ∀. Application of
Theorem 4.2 completes the proof. �

Now, we return to instances of re�nements. We will make Theorem 5.9 appli-
cable to the combinations of re�nements that were mentioned at the beginning
of this section. One can easily check that the following compositions are partial
orders:

≤ ◦ ⊆, ≤ ◦I, I ◦ ⊆, and (≤ ◦I)◦ ⊆ .

Routine inspection shows that the second re�nement of each of these compo-
sitions is antipreserving for the �rst one. We need to show that their CPP's
possess the intersection property.

Let Ω be the set of all seven intersections of sets

Pos{=}′ , Pos{=}, and QF. (22)

Lemma 5.10 Every pair of elements of the set Ω has the intersection property.

Proof. We prove that Pos{=}′ and QF have the intersection property. (The
cases of Pos{=} and QF, and Pos{=}′ and Pos{=} have similar proofs; the cases
involving their intersections are straightforward).

Let Σ ⊆ QF be logically equivalent to a subset of Pos{=}′ . We may assume
without loss of generality that all elements of Σ are minimal disjunctions of
atomic and negated atomic sentences. It follows from CPP(Pos{=}′ ,≤) that
≤ preserves the truthfulness of elements of Σ. Therefore, by the minimality of
its elements, Σ does not contain occurrences of predicates from < in a scope of
negation, that is, Σ ⊆ Pos{=}′ . Therefore, Σ ⊆ Pos{=}′ ∩QF. �

Here are the previously announced ∀-complete characterizations of combined
entailments by combined default assumption.

Main Theorem 5.11 For every Σ ⊆ ∀, and every ϕ ∈ ∀,

i. Σ `≤+⊆ ϕ i� ϕ ∈ DAPos{=}′ ∩QF (Σ)

ii. Σ `≤+I ϕ i� ϕ ∈ DAPos(Σ)

iii. Σ `⊆+I ϕ i� ϕ ∈ DAPos{=}∩QF (Σ)

iv. Σ `≤+⊆+I ϕ i� ϕ ∈ DAPos∩QF (Σ)

Proof by direct application of Lemmas 4.3, 3.6.1, 5.10, and Theorem 5.9. �
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Note. Because every ∀-sentence is logically equivalent to a conjunction of
clauses, all instances of Γ used in Theorem 5.11 can be restricted to clauses,
that is, QF may be understood as the set of ground clauses, Pos as the set of
clauses positive in every symbol in < and in equality symbol =, and so on.

We end this section with a brief account of some more important conse-
quences of Theorem 5.11.

� the Pos{=}′ ∩ QF -default assumption is clause-complete with respect to
totally minimal (i.e., predicate-minimal and domain-minimal) semantics.
It syntactically characterizes simultaneous application of predicate and
domain minimization.

� the Pos-default assumption is clause-complete with respect to predicate-
minimal discriminant semantics. For those Σ ⊆ ∀ which do not contain
positive appearances of =, the Pos-default assumption is clause-complete
with respect to predicate-minimal strongly discriminant semantics (if Σ
contains sentences of the form �a = b�, where a is not identical with b,
then Σ does not have strongly discriminant models).

� The Pos∩QF-default assumption is clause-complete with respect to mini-
mal Herbrand (i.e., totally minimal and discriminant) semantics. For those
Σ ⊆ ∀ which do not contain positive occurrences of =, the Pos ∩ QF-
default assumption is clause-complete with respect to minimal strongly
Herbrand semantics (if Σ contains sentences of the form �a = b�, where
a is not identical with b, then Σ does not have any strongly Herbrand
models). Therefore, the Pos ∩QF-default assumption may be recognized
as the ∀-complete version of generalized closed-world assumption GCWA
(cf. [Min82] and [YH85]) and extended closed-world assumption ECWA
(cf. [GPP86]).

� The Pos{=} ∩ QF-default assumption is clause-complete with respect to
Herbrand (i.e., domain-minimal and discriminant) semantics. For those
Σ ⊆ ∀ which do not contain positive occurrences of =, the Pos{=} ∩QF-
default assumption is clause-complete with respect to strongly Herbrand
semantics.

6 Languages without Equality

What if L does not include the equality symbol? Since the class of strongly
Herbrand models, or its subclass, has been widely accepted as the standard
semantics for deductive data bases and logic programs, exclusion of = from L
was perhaps the simplest way to ensure that a consistent set of clauses has
a strongly Herbrand model. In this Section, we use the results of Section 5 to
determine how the lack of the equality symbol in L a�ects the the ∀-completeness
of the Γ-default assumption.
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First, let us note that if M is a structure for language L with the equality
symbol = thenM is also a structure for language L′ being a result of removal
of = from L. Because the satisfaction relation does not depend on whether the
sentence in question is embedded in L or L′, it follows that for every set of
sentences Σ ⊆ L′, the class of models of Σ is the same as if Σ was understood as
a set of sentences of L. Of course, the set CnL′(Σ) of consequences of Σ in L′

is a proper subset of the set CnL(Σ) of consequences of Σ in L. Nevertheless, a
sentence ϕ ∈ L′ is a consequence of Σ within L′ if and only if it is a consequence
of Σ in L. Therefore, we have the following fact.

Fact 6.1 For every Σ ⊆ L′,

CnL′(Σ) = CnL(Σ) ∩ L′.

�

This preservation property of the consequence operation with respect to
removing the equality symbol from the underlying language extends over re�ned
entailments. More speci�cally, for each re�nement ∝, each Σ ⊆ L′, and each
ϕ ∈ L′, Σ `∝ ϕ holds independently of whether one embeds Σ and ϕ in L or in
L′. We state this observation in the following form.

Fact 6.2 For every re�nement ∝ and every Σ ⊆ L′,

{ϕ ∈ L′|Σ `∝ ϕ} = {ϕ ∈ L|Σ `∝ ϕ} ∩ L′.

�

Unfortunately, the same cannot be said about the Γ-default assumption, for
there exists Σ ⊆ ∀ ∩ L′ and ϕ ∈ ∀ ∩ L′ such that (Σ ∪ {ϕ})Γ∩L′ = ΣΓ∩L′ , but
(Σ ∪ {ϕ})Γ 6= ΣΓ.

Example 6.3 Let Σ = {P (c) ∨ P (d)}, ϕ = ¬P (c) ∨ ¬P (d), and Γ = Pos{=}′ .
We have (Σ ∪ {ϕ})Γ∩L′ = ΣΓ∩L′ , but because ¬(c = d) ∈ (Σ ∪ {ϕ})Γ \ ΣΓ,
(Σ ∪ {ϕ})Γ 6= ΣΓ. �

Therefore, in general, one cannot restrict Γ to Γ∩L′ while switching from L
to L′ without putting the ∀-completeness of the Γ-default assumption at risk.
For some Γ's it is possible, though. To show this we need the following technical
lemmas.

Lemma 6.4 For each Σ ⊆ ∀ ∩ L′ and ϕ ∈ Pos{=},

Σ `I ϕ i� Σ ` ϕ.

Proof. Σ `I ϕ i� [by Theorem 4.4.iv] (Σ ∪ {ϕ})Pos{=} = ΣPos{=} i� [since
ϕ ∈ (Σ ∪ {ϕ})Pos{=} ] ϕ ∈ ΣPos{=} i� Σ ` ϕ. �
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De�nition 6.5 Operation ′ on ∀-formulas of L and sets of ∀-formulas of L is
de�ned by induction as follows.

i. for every term t of L,
(t = t)′ = true

ii. for every pair t, s of non-identical terms of L,

(t = s)′ = false

iii. for every ∀-formula ϕ of ∀ without occurrences of =,

ϕ′ = ϕ

iv. for all quanti�er-free formulas ϕ,ψ of L,

(¬ϕ)′ = ¬ϕ′

(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

v. for every quanti�er-free formula ϕ of L,

(∀~xϕ)′ = ∀~xϕ′

vi. for every Γ ⊆ L,
Γ′ = {ϕ′ | ϕ ∈ Γ}.

�

Lemma 6.6 For each strongly discriminant structure M for L, and each ϕ ∈
QF,

M |= ϕ i�M |= ϕ′.

Proof by routine induction, using De�nition 6.5, i - iv. �

Lemma 6.7 For every Σ ⊆ ∀ ∩ L′ and ϕ ∈ QF,

Σ `I ϕ i� Σ `I ϕ′.

Proof. Σ `I ϕ i� [because Σ does not contain occurrences of =] ϕ is true in all
strongly discriminant models of Σ i� [by Lemma 6.6] ϕ′ is true in all strongly
discriminant models of Σ i� Σ `I ϕ′. �

Lemma 6.8 Assume that Γ ⊆ Γ′ ∪ Pos{=}. For every Σ, Π ⊆ ∀ ∩ L′,

ΣΓ = ΠΓ i� ΣΓ′ = ΠΓ′ . (23)

Proof. Assume ϕ ∈ Γ. We are going to show that Σ ` ϕ i� Σ ` ϕ′, and
Π ` ϕ i� Π ` ϕ′. This will prove (23).

Case 1: ϕ ∈ Γ′, is obvious since [by De�nition 6.5.vi] ϕ = ϕ′ in this case.
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Case 2: ϕ ∈ Pos{=} ∩QF . Σ ` ϕ i� [by Lemma 6.4] Σ `I ϕ i� [by Lemma
6.7] Σ `I ϕ′ i� [by Lemma 6.4; note that by De�nition 6.5, ϕ′ ∈ Pos{=}] Σ ` ϕ′.
Similarly, Π ` ϕ i� Π ` ϕ′.

Case 3: ϕ ∈ Pos{=} \ QF. Let ϕ = ∀~xψ(~x), where ψ(~x) is quanti�er-free.
Σ ` ∀~xψ(~x) i� Σ ` ψ(~c), where ~c is a sequence of constants not in Σ with ~x and
~c having the same pattern of repetitions, i� [using the same argument as in Case
2] Σ ` ψ(~c)′ i� Σ ` ∀~xψ(~x)′ i� [by De�nition 6.5.v] Σ ` (∀~xψ(~x))′. Similarly,
Π ` ϕ i� Π ` ϕ′. �.

Now, we are ready to prove the ∀-completeness of the following instances
the Γ-default assumption with respect to instances of entailment `∝.

Theorem 6.9 For every Σ ⊆ ∀ ∩ L′ and every ϕ ∈ ∀ ∩ L′,

i. Σ `≤+I ϕ i� ϕ ∈ DAPos∩L′(Σ)

ii. Σ `⊆+I ϕ i� ϕ ∈ DAQF∩L′(Σ)

iii. Σ `≤+⊆+I ϕ i� ϕ ∈ DAPos∩QF∩L′(Σ)

Proof. Let us note that the assumption Γ ⊆ Γ′ ∪ Pos{=} is met for these
instances of Γ: Pos,QF∩Pos{=}, and Pos∩QF. Respective instances of Γ′ are:
Pos ∩ L′,QF ∩ L′, and Pos ∩QF ∩ L′. The rest of proof is a direct application
of Lemma 6.8 to theorem 5.11. �

DAPos∩L′ was �rst introduced in [Suc87] as an instance of cwaS , and proven
complete with respect to entailment `≤+I in [Suc88].

As noted at the end of Section 5, QF in Theorem 6.9 may be replaced with
the set of ground clauses, Pos with the set of clauses positive in every symbol
in <, and Pos ∩ QF with the set of ground clauses positive in every symbol in
<.

We conclude this Section with the application of Theorem 6.9 to the eval-
uation of the degree of completeness of published in [YH85] extended version
GCWA∗ of Minker's GCWA.

Let us note that the condition involved in the de�nition of Γ-default assump-
tion, namely

(Σ ∪ {ϕ})Γ = ΣΓ (24)

is equivalent to ∧
γ∈Γ

Σ ` ¬ϕ ∨ γ implies Σ ` γ, (25)

which constitutes the familiar scheme whose instances occur in de�nitions of
Minker style closed-world assumptions. For Γ = Pos ∩ QF ∩ L′ (the set of
ground positive clauses without occurrences of =), and ϕ restricted to QF∩L′,
(25) expresses the GCWA∗(Σ), that is, by (10),∧

Σ⊆∀

GCWA∗(Σ) = DAPos∩QF∩L′(Σ) ∩QF ∩ L′. (26)
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Therefore, by Theorem 6.9.iii, GCWA∗ is ground-complete with respect to min-
imal strongly Herbrand entailment (cf. [YH85] for an early proof of this fact).

One should note, however, that although for some re�nements ∝ that do not
involve ⊆ (and consequently, respective ∝-�nest semantics are not restricted to
domain-minimal semantics), their complete preservation properties Γ satisfy∧

∀xϕ(x)∈∀

∀xϕ(x) ∈ DAΓ(Σ) i� ϕ(c) ∈ DAΓ(Σ),

(for example, take ∝ = ≤, and Γ = Pos{=}′), where c is a new constant
symbol from beyond L, the same is not true for ≤ + ⊆ + I. Therefore,
the ground completeness (26) of GCWA∗ does not imply its ∀-completeness.
Indeed, GCWA∗ is not ∀-complete with respect to minimal strongly Herbrand
semantics, except of course, for those Σ's which admit elimination of universal
quanti�ers. Here is a counterexample.

Example 6.10 Put Σ = {P (a) ∨ Q(b)}. One can check that GCWA∗(Σ) `
¬P (c). On the other hand, ∀x¬P (x) is inconsistent with Σ. Hence, ϕ(c) cannot
be used as a valid replacement for (∀x)(ϕ(x)) when GCWA∗ is used. Conse-
quently, GCWA∗(Σ) 6` (∀x)(¬P (x) ∨ ¬Q(x)), even though
Σ `≤+⊆+I (∀x)(¬P (x) ∨ ¬Q(x)). Of course, by Theorem 6.9.iii,
(∀x)(¬P (x) ∨ ¬Q(x)) ∈ DAPos∩QF∩L′(Σ). �

This fact makes GCWA∗ strictly weaker than DAPos∩QF∩L′ . Similar argument
shows that also ECWA of [GPP86] is strictly weaker than DAPos∩QF∩L′ ; it turns
out that the published in [GPP86] proof of ∀-completeness of ECWA works only
for cases of Σ which admit elimination of quanti�ers.

7 Few Words about the Roots

Default rules of inference were introduced by Reiter in [Rei80], also the inventor
of the closed-world assumption ([Rei78]), and quickly became a very fashionable
subject of research. At the same time, McCarthy in his famous paper [McC80]
about circumscription initiated investigations of �rst-order minimal models.
Second-order variant of circumscription was proven complete with respect to
minimal-model semantics by Lifschitz in [Lif85]. A restricted form of scheme
(25) was �rst used by Minker in [Min82], with subsequent ground-complete
extensions by Yahya and Henschen ([YH85]), and Gelfond, Przymusi«ska and
Przymusi«ski ([GPP86]). Credit for the �rst proof of dense foundedness is due
to Bossu and Siegel ([BS84]).

Marczewski in [Mar51] and Lyndon in [Lyn51] (followed by [Lyn59b]) were
�rst to study preservations of positive sentences. The consequence operation
de�ned by

(Σ ∪ {ϕ})∀ = Σ∀ (27)
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was �rst used by Kaiser in [Kai69] and later by Henrard, who proved in [Hen73]
that certain iterative use of (27) completely characterizes the generic-model
semantics of Robinson's model-theoretic forcing of [Rob71]. A generalization
(24) of scheme (27) was �rst applied to analysis of the closed-world assumption
in [Suc87], with its ∀-completeness proven in [Suc88].
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