
Heaps and Balanced Trees

Dr. Marek A. Suchenek ©

April 24, 2011

0.1 Binary representations of positive natural num-
bers

How many bits are needed to represent a number M > 0 in binary? Let’s
say it’s n. We have:

M ≤ 11 . . . 1︸ ︷︷ ︸
n

11 . . . 1︸ ︷︷ ︸
n

+1 = 1 00 . . . 0︸ ︷︷ ︸
n

= 2n

So,

11 . . . 1︸ ︷︷ ︸
n

= 2n − 1

or

M ≤ 2n − 1
or

M + 1 ≤ 2n

or

log2(M + 1) ≤ n

or

dlog2(M + 1)e ≤ n

1



or

blog2 Mc+ 1 ≤ n.

So, the smallest n that is large enough is blog2 Mc + 1; that is how bits
are needed to represent number M > 0 in binary.

Exercise. Do you see a set of binary sequences on Figure 1? Do you see
a complete binary tree there?

Figure 1: Do you see a set of binary sequences and a complete binary tree
here?

0.2 Heaps
A heap may be defined as a contiguous, partially ordered binary tree. Con-
tiguous means that all levels of the tree in question, except , perhaps, for the
last level, contain the maximum number of nodes, and if the last level of the
tree contains a lesser number of nodes then they all are flushed as much to
the left as possible.

Figure 2 visualizes an example of heap with 17 nodes. (A heap so large
that one could not see the individual nodes and edges on a picture that fits on
one page may look like one presented on Figure 3.) It shows nodes’ ordinal
numbers in decimal. Their binary representations are of the form: 1 followed
by a sequence of edges’ labels along the path from the root to the node in

2



0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Figure 2: A heap with 17 nodes showing nodes’ ordinal numbers in decimal.

question. For instance, the sequence of labels along the path from the root
to node number 17 is 0001 and the binary representation of 17 is 10001. The
depth of the node number 17, defined as the length of path from the root
to that node, is 4 and may be computed as one less than the length of the
binary representation of 17, that is, blog2 17c. Since it is the last node of the
heap, it is also the depth of the heap. (We will comment more on this later.)

Figure 3: A really large heap on a small picture.

In addition to providing navigation information, labels of the edges indi-
cate orientation of children: an edge labeled with 0 points to the left child
and one labeled with 1 points to the right child. It so happens that the
children of node i are 2i and 2i+ 1, as it has been visualized on Figure 4.

This important fact may be easily established by looking at binary rep-
resentations of nodes’ ordinal numbers. Since each such representation is a

3



0 1

i

2 i 2 i + 1

Figure 4: Ancestral information translated onto ordinal numbers.

sequence of bits that determine the path from the root to the node in ques-
tion, the binary representation of a parent node is a result of truncating the
last bit from the binary representation of any of its children. Truncating the
last bit yields the same result as the shiftright operation, that performs
the integer division by 2. So, if j is the ordinal number of a child then the
ordinal number i of its parent is

i = bj2c,

or, in other words,

j =


2i if j is the left child of i

2i+ 1 if j is the right child of i.
(1)

For example, the path from the root to node 13 in the heap on Figure 2,
is 101 which can be obtained from the binary representation of 13, that is,
from 1101, by dropping its first digit 1. So the path to the parent of 13 is 10
and the ordinal number of the node at the end of that path (the parent of
13) is 110, or in 6 in decimal. So, 6 is the parent of 13. Of course, 6 = b13

2 c.
Also, the children of 6, if it has any, must have ordinal numbers that

in binary read 1100 and 1101 since these are the only numbers that when
divided by 2 will yield 110 or 6. These are 12 and 13.

4



In a similar fashion one can determine if a node i has a child of children
by comparing 2i to n. If 2i ≤ n then i has a child or children and if 2i > n
then it has not (is a leaf, that is). If 2i = n then 2i + 1 > n and so node i
does not have the right child. If 2i < n then 2i + 1 ≤ n and so node i does
have the right child.

Partially ordered means that every sequence of nodes along a path from
the root to a leaf in the tree is ordered in a non-increasing order. Or, in other
words, that children, if any, of a node are not larger than their parent.

Figure 5 visualizes an example of a heap with 10 nodes with the values
of the nodes shown instead of their ordinal numbers.

0 1

0 1 0 1

0 1 0

10

9 3

8 6 1 2

7 4 5

Figure 5: A heap with 10 nodes showing their values and not the ordinal
numbers.

Contiguous trees are easy to represent with one-dimensional arrays that
store the nodes of the tree according to their level-by-level order. Naturally,
the root of the tree is stored at index 1, and the children, if any, of a node
stored at index i are stored at indicies 2i (the left child) and 2i+ 1 (the right
child).

The table in Figure 6 shows an array that represents the heap of Figure 2
with the indicies of the array shown in the top row of the table.

5



1 2 3 4 5 6 7 8 9 10
10 9 3 8 6 1 2 7 4 5

Figure 6: Array representation of the heap of Figure 5.

0.3 The height (or depth) of a heap
Each node of of a heap with n nodes is represented by a binary sequence (a
path from the root of the heap to that particular node). The depth of the
heap is equal to the maximal (over all nodes of the heap) length of such a
path. Since the last node in the heap belongs to the last level of the heap,
the length of the path from the root to that last node is maximal.

Let p be the path from the root to the last node of the heap. As we
noticed before, the binary representation of that node’s ordinal number (n,
that is) is 1 followed by p.

In other words, the depth Dn of the heap with n nodes, which is equal to
the length of p, is one less than the number of bits needed to represent n. So

Dn = blog2 nc.

Exercise Show that a heap with l leaves (not nodes) has a depth D that
satisfies

dlog2 le ≤ D ≤ blog2 lc+ 1.

Note Since the depth of a heap with n nodes is also the level of node n,
it follows that the level of node i is:

level(i) = blog2 ic.
To see why, remove from the heap all the nodes after i. The resulting

heap will have i nodes so its height is blog2 ic, which (by the definition of the
height of a heap) happens to be the same as the level of i.

0.4 The running time of H.remove() and H.insert(x)

Let H be a heap with n nodes. The number of comparisons Cremove(n) done
in the worst case by H.remove() is less equal to 0 if n = 1 or equal to 2×Dn−1

6



or 2 ×Dn−1 − 1 otherwise, where Dn−1 is the depth of the heap with n − 1
nodes (after removal, that is), and the number of comparisons Cinsert(n) done
in the worst case by H.insert(x) is less than or equal to Dn+1, where Dn+1 is
the depth of the heap with n+ 1 nodes (after inserting of x, that is).

So,

2× blog2(n− 1)c − 1 ≤ Cremove(n) ≤ 2× blog2(n− 1)c for n > 1,

and

Cinsert(n) = blog2(n+ 1)c.

Therefore,

Cremove(n) ∈ Θ(log n) and Cinsert(n) ∈ Θ(log n).

0.5 The running time of PriorityQueueSort

Assume that the array to be sorted has n elements. The number of compar-
isons in the first for-loop is

Σn−1
i=0 Cinsert(i) = Σn−1

i=0 blog2(i+ 1)c

and the number of comparisons in the second for-loop is

Σn
i=2(2× blog2(i− 1)c − 1) ≤ Σn

i=2Cremove(i) ≤ Σn
i=22× blog2(i− 1)c

or

Σn
i=22× blog2(i− 1)c − (n− 1) ≤ Σn

i=2Cremove(i) ≤ Σn
i=22× blog2(i− 1)c

so that the total number of comparison in both loops is

Σn−1
i=0 blog2(i+ 1)c+ Σn

i=22× blog2(i− 1)c − (n− 1) ≤ Csort(n) ≤

≤ Σn−1
i=0 blog2(i+ 1)c+ Σn

i=22× blog2(i− 1)c

7



that is,

Σn
i=1blog2 ic+ 2Σn−1

i=1 blog2 ic − (n− 1) ≤ Csort(n) ≤

≤ Σn
i=1blog2 ic+ 2Σn−1

i=1 blog2 ic

or

3Σn−1
i=1 blog2 ic − n+ blog2 nc+ 1 ≤ Csort(n) ≤ 3Σn−1

i=1 blog2 ic+ blog2 nc. (2)

Let’s compute first the sum SM = ΣM
i=1blog2 ic = ΣM

i=1level(i). This sum
is adding the levels of all nodes of the heap with M nodes together, so it can
be split on the sum of all levels of the nodes that are in the first DM levels
(ranging from 0 to blog2 Mc− 1) plus the sum of the levels of the nodes that
are in the last level DM = blog2 Mc).

For the example of heap on Figure 2 (M = 17 in this case), Figure 7 shows
how to split Σ17

i=1blog2(i)c on Σblog2 17c−1
i=1 i×2i plus (17−2blog2 17c+1)blog2(17)c.

5 10 15

1

2

3

4

0 ´ 2 0

1 ´ 2 1
2 ´ 2 2

3 ´ 2 3

Figure 7: Computation of Σ17
i=1blog2(i)c (the colored area) as Σblog2 17c−1

i=1 i×2i

(the reddish area) + (17− 2blog2 17c + 1)blog2(17)c (the cyan area).

Clearly, there are

Σblog2 Mc−1
j=0 2j = 2blog2 Mc − 1

nodes in the first blog2 Mc − 1 levels of the heap. (Note that 2blog2 Mc is the
largest power of 2 that is not greater thanM .) So, the last level must contain
M − (2blog2 Mc − 1) = M − 2blog2 Mc + 1 nodes. Therefore:

8



SM = ΣM
i=1level(i) = Σ2blog2 Mc−1

i=1 level(i) + ΣM
i=2blog2 Mclevel(M) =

Σ2blog2 Mc−1
i=1 blog2 ic+ ΣM

i=2blog2 Mcblog2 Mc =

Σblog2 Mc−1
i=1 i× 2i + blog2 Mc × (M − 2blog2 Mc + 1) =

(blog2 Mc − 2)2blog2 Mc + 2 + blog2 Mc × (M − 2blog2 Mc + 1) =

(blog2 Mc−2)×2blog2 Mc+blog2 Mc×M−blog2 Mc×2blog2 Mc+blog2 Mc+2 =

blog2 Mc×2blog2 Mc−2×2blog2 Mc+blog2 Mc×M−blog2 Mc×2blog2 Mc+blog2 Mc+2 =

−2× 2blog2 Mc + blog2 Mc ×M + blog2 Mc+ 2 =

Mblog2 Mc − 2blog2 Mc+1 + blog2 Mc+ 2 =

(M + 1)blog2 Mc − 2blog2 Mc+1 + 2.

Hence,

SM = ΣM
i=1blog2(i)c = (M + 1)blog2 Mc − 2blog2 Mc+1 + 2

.
In particular,

Sn−1 = Sn − blog2 nc = nblog2 nc − 2blog2 nc+1 + 2,

that is,
Σn−1

i=1 blog2 ic = nblog2 nc − 2blog2 nc+1 + 2. (3)

9



Combining (2) and (3), we conclude that the total number Csort(n) of
comparisons is:

Csort(n) ≤ 3×Sn−1 + blog2 nc = 3(nblog2 nc− 2blog2 nc+1) + blog2 nc+ 6. (4)

Let x = log2 n− blog2 nc, that is,

blog2 nc = log2 n− x. (5)

Applying (5) to (4) we obtain:

Csort(n) ≤ 3(n(log2 n− x)− 2log2 n+1−x) + log2 n− x+ 6 =

3(n(log2 n−x)−n21−x)+log2 n−x+6 = 3n(log2 n−(x+21−x))+log2 n−x+6 =

(3n+ 1) log2 n− 3(x+ 21−x)n− x+ 6 = (3n+ 1) log2 n− 3αn+ β,

where α = x+ 21−x and β = 6− x, that is, 1.91 < α ≤ 2 and 5 < β ≤ 6.
The same way we compute that

(3n+ 1) log2 n− 3αn+ β − (n− 1) ≤ Csort(n),

or

(3n+ 1) log2 n− (3α + 1)n+ β + 1 ≤ Csort(n).

Hence,

(3n+ 1) log2 n− 7n+ 5 < Csort(n) < (3n+ 1) log2 n− 5.73n+ 6. (6)

Of course,
Csort(n) ∈ Θ(n log n) (7)

as both
(3n+ 1) log2 n− 7n+ 6 ∈ Θ(n log n)

and
(3n+ 1) log2 n− 5.73n+ 6 ∈ Θ(n log n).

Figure 8 visualizes Csort(n) and its upper and lower bounds
(3n+ 1) log2 n− 7n+ 6 and (3n+ 1) log2 n− 5.73n+ 6.

10



5 10 15 20

50

100

150

Figure 8: Graph of Csort(n) and its upper and lower bounds.

11


