

On the Performance of Nash Equilibria for Data Preservation in Base Station-less Sensor Networks

Data Preservation in BSNs:

- □ Source nodes
 - Storage-depleted
 - Overflow data packets
- Storage nodes
 - ✤ Available storage spaces
- **D**ata Preservation: overflow
 - data is offloaded from source nodes to storage nodes
- \Box Node u sends a packet of R bits to v over l_{uv}

 $E_r(R) = E_{elec} \times R$ $E_t(R, l_{u,v}) = E_{elec} \times R + \epsilon_{amp} \times R \times l_{u,v}^2$

Data Preservation Problem in BSNs

Goal: How to find a data preservation that minimizes the energy consumption (total preservation cost)

Source Nodes

Storage Nodes

Giovanni Rivera*, Yutian Chen[†], Bin Tang* *Department of Computer Science, California State University Dominguez Hills [†]Economics Department, California State University Long Beach

Why Game Theory?

- Sensor nodes become intelligent, could perceive, learn, and reason on top of sensing, computation, and communication
 - Sensor networks are distributed in nature and sensor nodes could under different controls
 - Sensor nodes have limited battery and processing power
 - Nash Equilibrium (NE): Game-theoretical solution that characterizes selfish players' optimal strategies in non-cooperative games
 - Not socially optimal due to selfish players, needs to study performance degradation in NE
 - Question: Can we design data preservation algorithms that achieve NE with performance guarantees?
 - Performance Metrics of Data Preservation Nash Equilibrium (DP-NE)
 - a. Price of Anarchy (PoA): ratio of total preservation cost of worst DP- NE and the socially optimal : Performance upper bound
 - b. Price of Stability (PoS): ratio of the total preservation cost of the best DP-NE and the socially optimal: Performance lower bound
 - c. Rate of Efficiency Loss (REL): ratio of total preservation cost of any DP-NE and the socially optimal: Able to quantity any DP-NE

Research Results:

Algorithm 1: The Node-based Greedy Algo.

- In each iteration, one source node offloads its overflow data packets to its closest storage nodes with available spaces
- Theorem 2: The Node-Based Greedy Algorithm reaches a NE with a PoA = H(d), where H(d) = $2^{d-1} + 2^{d-2} + \dots + 2^{0}$, where *d* is total number of data packets

. Illustrating PoA = H(d) for NEs resulted from Algo. 1.

Algorithm 2: The Distance-based Greedy Algo.

1. In each iteration, it finds a source and storage node pair with the minimum preservation cost

2. Theorem 3: The Distance-Based Greedy Algorithm reaches a NE with a PoA < 3

Theorem 4: There exists a greedy

◆DPP in BSN graph is equivalent to MCF in above flow network

Theorem 1: The MCF-based data preservation algorithm gives a NE (with demand of d) with optimal total preservation cost; its PoA = PoS = 1

> Algorithm 1: The Node-based Greedy Algorithm. **Input:** A BSN graph G(V, E); **Output:** Data preservation paths $f: D \to V_r$;

- **Notations**: l_i : number of un-offloaded data packets at S_i ; h_i : number of available storage spaces at R_i ; for $(1 \le i \le k)$ // current data packets at S_i
- $l_i = d_i;$ for $(1 \le j \le q)$ // current storage space at R_j
- for $(1 \le i \le k)$ // each source node S_i
- while $(l_i > 0)$ Find the storage node in V_r closest to S_i that still
- has available spaces, say R_i ; Offload min (l_i, h_j) packets to R_j along the
- the preservation path between S_i and R_i ; $l_i = l_i - \min(l_i, h_j), \ h_j = h_j - \min(l_i, h_j);$
- end while:
- 11. end for; 12. **RETURN** $f: D \to V_r$.

Algorithm 2: The Distance-base Greedy Algorithm. **Input:** A BSN graph G(V, E); **Output:** Data preservation paths $f: D \to V_r$; **Notations**: l_i : number of un-offloaded data packets at S_i ;

- h_i : number of available storage spaces at R_i ; 1. for $(1 \le i \le k)$ // current data packets at S_i
- $l_i = d_i;$ 2. for $(1 \le j \le q)$ // current storage space at R_j
- $h_i = m_i$ 3. Find the shortest distance between all the (S_i, R_j) pairs; 4. Sort the pairs in the non-descending order of their
- distances and denote it as L; 5. while (*L* is not empty)
- 6. Let (S_i, R_j) be the first pair in L;
- 7. **if** $(l_i > 0 \land h_j > 0)$ Offload min (l_i, h_j) packets from S_i to R_j along the the data preservation path between S_i and R_i ;
- 9. end if: 10. $l_i = l_i - \min(l_i, h_j), h_j = h_j - \min(l_i, h_j);$
- 11. **if** $(l_i == 0 \lor h_i == 0)$ 12. Remove (R_i, S_j) from L;
- 13. end if;
- 14. end while; 15. **RETURN** $f: D \to V_r$.

algorithm for DPP that reaches NE with PoS = PoA = 1

Performance Evaluation:

BSN sensor field

- \Box 50 nodes in 2000m × 2000m network, Tr = 200m, Each packet
- □ 75 randomly selected as source node, rest storage nodes
- \Box Number of packets at each source node $d_i = 100$, storage capac

□ Algorithms

- □ Minimum cost flow (MCF), Node-based greedy (Greedy-N), (Greedy-D)
- □ Rate of Efficiency Loss (REL)
- Each data point is an average of 20 runs

Fig. 8. Total preservation costs of different algorithms.

Conclusions and Future Work:

- □ Study the NE performances of data preservation algorithms in BS
- \Box Minimum cost flow-based algorithm achieves NE with PoS = 1
- □ There always exists an efficient greedy algorithm that produces N
- Consider the different data packets have different values

References:

• On the Performance of Nash Equilibria for Data Preservation in B Sensor Networks, Giovanni Rivera, Yutian Chen, and Bin Tang, Pr IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2023). □ Truthful and Optimal Data Preservation in Base Station-less Sensor Networks: An Integrated Game Theory and Network Flow Approach, Yuning Yu, Shangli Hsu, Andre Chen, Yutian Chen, Bin Tang. ACM Transactions on Sensor Networks, 2023, Volume 20, Issue 1, pp 1–40.

Acknowledgements: This research is supported by NSF CISE-MSI Grant No. CNS-2131309 titled "CISE-MSI: RCBP-RF: CNS: Truthful and Optimal Data **Preservation in Base Station-less Sensor Networks: An Integrated Game Theory and Network Flow Approach**

et is 512 Bytes	
city $m_j = 100$	
, Distance-based greedy	
as a less NE efficiency loss N	
ackets aggravate NE s while more storage spaces efficiency loss	
e social resources, no s for any NEs	
m instances .08, 1.52] for $d_i = m_j = 1$.05, 1.25] for $d_i = m_j = 10$ results much better than results $d_{i} = 20$	0
dy-D < Greedy-N	
difference are smaller servation is less challenging	
terpretation: more resources performance degradation of	
	I
SNs	
NEs with $PoS = 1$	
Base Station-less Proceedings of the	