

On the Performance of Nash Equilibria for Data Preservation in Base Station-less Sensor Networks

Giovanni Rivera*, Yutian Chen†, Bin Tang* *Department of Computer Science, California State University Dominguez Hills † Economics Department, California State University Long Beach

V• **DPP** in BSN graph is equivalent to MCF in above flow network

 \div **Theorem 1: The MCF-based data** preservation algorithm gives a NE super Sink
(with demand of d) With optimal total preservation cost; its $PoA = PoS = 1$

> Algorithm 1: The Node-based Greedy Algorithm. **Input:** A BSN graph $G(V, E)$; **Output:** Data preservation paths $f: D \to V_r$;

- **Notations:** l_i : number of un-offloaded data packets at S_i ; h_i : number of available storage spaces at R_i ; for $(1 \le i \le k)$ // current data packets at S_i $l_i = d_i;$
- for $(1 \le j \le q)$ // current storage space at R_i
- for $(1 \le i \le k)$ // each source node S_i
- while $(l_i > 0)$ Find the storage node in V_r closest to S_i that still
- has available spaces, say R_i ; Offload min(l_i , h_j) packets to R_j along the
- the preservation path between S_i and R_i ; $l_i = l_i - \min(l_i, h_j), h_j = h_j - \min(l_i, h_j);$
- end while:
- 11. end for; 12. **RETURN** $f: D \to V_r$.

Algorithm 2: The Distance-base Greedy Algorithm. **Input:** A BSN graph $G(V, E)$; **Output:** Data preservation paths $f: D \to V_r$; **Notations:** l_i : number of un-offloaded data packets at S_i ;

- h_i : number of available storage spaces at R_i ; 1. for $(1 \le i \le k)$ // current data packets at S_i
- $l_i = d_i;$ 2. for $(1 \le j \le q)$ // current storage space at R_i $h_i = m_i$
- 3. Find the shortest distance between all the (S_i, R_j) pairs; 4. Sort the pairs in the non-descending order of their distances and denote it as L ;
- 5. while $(L$ is not empty)
- 6. Let (S_i, R_j) be the first pair in L; **if** $(l_i > 0 \land h_j > 0)$
- Offload min(l_i , h_j) packets from S_i to R_j along the the data preservation path between S_i and R_i ; $9.$ end if:
- 10. $l_i = l_i \min(l_i, h_j), h_j = h_j \min(l_i, h_j);$
- 11. if $(l_i == 0 \vee h_i == 0)$
- 12. Remove (R_i, S_j) from L; 13. **end if;**
- 14. end while;
- 15. RETURN $f: D \to V_r$.

algorithm for DPP that reaches NE with $Pos = PoA = 1$

Acknowledgements: This research is supported by NSF CIS CNS-2131309 titled "**CISE-MSI: RCBP-RF: CNS: Truthful and Optimal Data** Preservation in Base Station-less Sensor Networks: An Integrated Game Theory and **Network Flow Approach**

Why Game Theory?

Theorem 4: There exists a greedy

Performance Evaluation:

 \Box BSN sensor field

- \Box 50 nodes in 2000m×2000m network, Tr = 200m, Each packet
- \Box 75 randomly selected as source node, rest storage nodes
- **Q** Number of packets at each source node $d_i = 100$, storage capacity m_j

\Box Algorithms

- □ Minimum cost flow (MCF), Node-based greedy (Greedy-N), (**Greedy-D**)
- \Box Rate of Efficiency Loss (REL)
- \Box Each data point is an average of 20 runs
- \Box Sensor nodes become intelligent, could perceive, learn, and reason on top of sensing, computation, and communication
- \Box Sensor networks are distributed in nature and sensor nodes could under different controls \Box Sensor nodes have limited battery and processing power
- \Box Nash Equilibrium (NE): Game-theoretical solution that characterizes selfish players' optimal strategies in non-cooperative games
- \Box Not socially optimal due to selfish players, needs to study performance degradation in NE
	- Question: Can we design data preservation algorithms that achieve NE with performance guarantees?
	- Performance Metrics of Data Preservation Nash Equilibrium (DP-NE)
	- a. Price of Anarchy (PoA): ratio of total preservation cost of worst DP- NE and the socially optimal : Performance upper bound
	- b. Price of Stability (PoS): ratio of the total preservation cost of the best DP-NE and the socially optimal: Performance lower bound
	- c. Rate of Efficiency Loss (REL): ratio of total preservation cost of any DP-NE and the socially optimal: Able to quantity any DP-NE

- 1. In each iteration, one source node offloads its overflow data packets to its closest storage nodes with available spaces
- Theorem 2: The Node-Based Greedy Algorithm
reaches a NE with a $PoA = H(d)$, where $H(d) =$ $2^{d-1} + 2^{d-2} + \ldots + 2^{0}$, where *d* is total number of data packets

Source Nodes	7.5	Storage Nodes							
R_1	S_1	R_2	S_2	R_1	S_1	R_2	S_2	R_3	S_3
(a)	(b)	(c)	(d)	(e)					
R_1	S_1	R_2	S_2	R_3	S_3	R_{k+1}	S_{k+1}		
①	①	①	①	①	①	①	④		

Fig. 3. Illustrating PoA = $H(d)$ for NEs resulted from Algo. 1.

2. Theorem 3: The Distance-Based Greedy Algorithm reaches a NE with a PoA $<$ 3

Conclusions and Future Work:

- \Box Study the NE performances of data preservation algorithms in BS
- \Box Minimum cost flow-based algorithm achieves NE with PoS = 1
- \Box There always exists an efficient greedy algorithm that produces N
- \Box Consider the different data packets have different values

 \square On the Performance of Nash Equilibria for Data Preservation in B Sensor Networks, Giovanni Rivera, Yutian Chen, and Bin Tang, Pi IEEE International Conference on Mobile Ad-hoc and Sensor Systems **Q** Truthful and Optimal Data Preservation in Base Station-less Sensor Integrated Game Theory and Network Flow Approach, Yuning Yu Andre Chen, Yutian Chen, Bin Tang. ACM Transactions on Senso Volume 20, Issue 1, pp 1–40.

Research Results:

Algorithm 1: The Node-based Greedy Algo.

Algorithm 2: The Distance-based Greedy Algo.

1. In each iteration, it finds a source and storage node pair with the minimum preservation cost

Fig. 8. Total preservation costs of different algorithms.

References: