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Abstract: Why Game Theory? | | Performance Evaluation:

[ The overarching goal of the project is to create a truthful and optimal resource allocation - Sensor nodes become intelligent, could perceive, learn, and reason on top of

framework for emerging base station-less sensor networks (BSNs). sensing, computation, and communication (J BSN sensor field
3 As BSNs are deployed in challenging environments (e.g., underwater exploration), there is J Eg;gﬂtsr%ﬂ Snetworks are distributed in nature and sensor nodes could under different 50 nodes in 2000m X 2000m network, Tr = 200m, Each packet is 512 Bytes

no data-collecting base station available in the BSN. The paramount task ot the BSN 1s to O 75 randomly selected q ot q

]greser;ve larigle lillmounts of generated data inside the BSN before uploading opportunities 0 Sensor nodes have limited battery and processing power rancomiy SCICCICA a5 SOUrce node, rest s1orage noacs

ceOME avatiable. . Nash Equilibrium (NE): G theoretical solution that character: Ifish 1 Number of packets at each source node d;= 100, storage capacity m= 100
. . . . . as uilibrium : Game-theoretical solution that characterizes selfis

[ Previous research designed a sequence of cooperative data preservation techniques based playersgoptimal strategies in non-cooperative games O Aleorith

on classic network flows (e.g., maximum (weighted) flow and minimum cost flow). gorithms

d Not socially optimal due to selfish players, needs to study performance . :

3 In a distributed setting and under different control, however, the sensor nodes with limited degradation in NE - Minimum cost flow (MCF), Node-based greedy (Greedy-N), Distance-based greedy

resources (1.e., energy power and storage spaces) could behave selfishly 1n order to save . . . . . . (Greedy-D)

their own resources and maximize their own benefits. 4 Question: Can we design data preservation algorithms that achieve NE with .

performance guarantees?  Rate of Efficiency Loss (REL)

 The tension between node-centric selfishness and data-centric data preservation in our O Each data point is an average of 20 runs

unique BSN model gives rise to new challenge that calls for integrated study of game 0 Performance Metrics of Data Preservation Nash Equilibrium (DP-NE)

theory and network flows in the same problem space.

il ' RElne— 7 o 18— RELVe— | =« Greedy-D has a less NE efficiency loss
a. Price of Anarchy (PoA): ratio of total preservation cost of worst DP- NE and the g BT J[ e 2 °= | than Greedy-N
socially optimal : Performance upper bound 3 12| vl 3 120 e J}"*‘ »
:§ R I T . N § 1'11? I H; 10 10s |+ More data packets aggravate NE
b. Price of Stability (PoS): ratio.of the total preservation cost of the best DP-NE and s L e 5 105 | “ies | efficiency loss while more storage spaces
e socially optimal: Performance lower bound & 1.05 g alleviate NE efficiency loss

Base Station-less Sensor Networks (BSNs):

1 Sensing applications developed
1inaccessible and remote area

o Underwater exploration, volcano eruption

(] Not feasible to install base station in field

] Sensory data are stored in the network,
periodically uploaded to basestation via

c. Rate of Efficiency Loss (REL): ratio of total Breservation, cost of an%\IDP-NE and

Research Results:
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Super Source
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le to quantity any DP-NE

“*DPP in BSN graph is equivalent
to MCF 1n above flow network

**Theorem 1: The MCF-based data
preservation algorithm gives a NE
Super Sink
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Fig. 6. Investigating the PoAs of Greedy-N.
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» With 1nfinite social resources, no
efficiency loss for any NEs

100 random 1nstances

RELy =[1.08, 1.52] ford; = m; = 1
RELy =[1.05, 1.25] ford; = m; = 10
Empirical results much better than

theoretical results
PoA =241+ 242 + 4+ 20

+«MCF < Greedy-D < Greedy-N

G(VSE) 200 | d"i',cg =1 { : 200 | J[ 6 ng — |
. . reeqy—-bLD £/ reeqy—-0D £/
I'Ob()ts or AUVS . . _ Algorithm 1: The Node-based Greedy Algorithm. 180 1 Greedy-N ——= ]l 180 t Greedy-N ——1 -
Algorithm 1: The Node-based Greedy Algo. Input: A BSN graph G(V, E): 140 1[ oo | J[Jr - Performance difference are smaller

Source: http://fiji.eecs.harvard.edu/Volcano

1. In each iteration, one source node offloads its

Output: Data preservation paths f: D — V,.;
Notations: /;: number of un-offloaded data packets at S;;
h;: number of available storage spaces at R;;
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when data preservation is less challenging

)

1 40 .o .
OYtGﬁﬂOWId%tla packets to its closest storage nodes | ¢ < i < k) // current data packets at S, 20 » Economic interpretation: more resources
With availabl€ Spaces T, 50 60 70 80 90 100 50 60 70 80 90 100 - :
2. l; = d;: overfiow Packets Storage Gapacily results in less performance degradation of
3. for (1 < j < gq) // current storage space at R; 9e =P NEs
. . 2. Theorem 2: The Node-Based Greedy Algorithm ~ # hj =m;; (a) Varying d; with m; = 100. (b) Varying m; with d; = 100.
Data Preservation in BSNs: reaches a NE with a Pod = H(d), where H(d) = 5. for (1 <i < k) // each source node S,
24-1 4 242+ + 20 whered is total number of 6. while (I; > 0) , . . .
data packets - Find the storace node in V. closest to S- that still Fig. 8. Total preservation costs of different algorithms.
(d Non-uniform data generation and limited storage capacity I has available spaces, say R;:
@ Source Nodes O Storage Nodes . OS SOLgce N;des 2 Rg s n s 8. Offload min(l;, h;) packets to R; along the
3 Source nodes o—0—0-0 O0—0-O0O-—o0-—-0—-0 the preservation path between S; and R;: .
@ o 9. l; = i — min(l;, hy). h; = h; — min(l;, hy): Conclusions and Future Work:
R; R, S: R; S Ris1 Sist 10. end while;

¢ Storage-depleted

*» Overflow data packets
] Storage nodes

¢ Available storage spaces

(] Data Preservation: overflow

data 1s offloaded from source nodes to storage nodes

4 Node u sends a packet of R bits to v over / C h; = m;: R L .
b oY and storage node pair with the 3 B e e ol the (S:. R;) pairs: d On the Performance of Nash Equilibria for Data Preservation in Base Station-less
E,(R) = Eeec x R minimum preservation cost 4. Sog‘ the pairs i(r; ctlhe non_-desczpding order of their Sensor Netwoorks, Giovanni Rivera, Yut.ian Chen, and Bin Tang, Proceedings of the
- ) wh“‘st‘?zc‘;s o ent:;?;f as ks IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2023).
Ev(Biluy) = Betee X B+ €amp X B XL, Let (S;, R,) be the first pair in L 1 Truthful and Optimal Data Preservation in Base Station-less Sensor Networks: An

(] Data Preservation Problem in BSNs

Goal: How to find a data preservation that minimizes the energy consumption (total
preservation cost)

A B ¢ D E F 3. end if;
O—O0—O—0—0O0—0 Theorem 4: There exists a greedy :;1 cla{nélT\:Jl;{il;; —— CNS-2131309 titled “CISE-MSI: RCBP-RF: CNS: Truthful and Optimal Data
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1 Study the NE performances of data preservation algorithms in BSNs

(c)

1. end for;
12. RETURN f:D —V,.

Fig. 3. [Illustrating PoA = H (d) for NEs resulted from Algo. 1.

Algorithm 2: The Distance-based Greedy

Algo.

Algorithm 2: The Distance-base Greedy Algorithm.
Input: A BSN graph G(V, E);
Output: Data preservation paths f: D — V;;
Notations: /;: number of un-offloaded data packets at Sj;;
h;: number of available storage spaces at R;;
1. for (1 < i < k) // current data packets at .S;
li — dil

1. In each iteration, 1t finds a source 2. for (1 <j < g) // current storage space at R;

2. Theorem 3: The Distance-Based
Greedy Algorithm reaches a NE

with a POA <3

S

6

7. if(l; >0Ah; >0)

8 Offload min(l;, h;) packets from S; to R; along the
the data preservation path between .S; and R;;

0. end if;

10. li = li — min(l,', hj)_. hj = hj — 1nin(l,~, hj);

11. if(l;==0Vh; ==0)

12. Remove (R;,S;) from L;

algorithm for DPP that reaches NE with PoS = PoA =1

d Minimum cost flow-based algorithm achieves NE with PoS = 1
 There always exists an efficient greedy algorithm that produces NEs with PoS = 1
 Consider the different data packets have different values
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