
Energy-Efficient Data Collection in Robotic Sensor Networks

Christopher Beauchamp, Soham Patil, Bin Tang

Department of Computer Science, California State University Dominguez Hills

Abstract

We study how to collect data efficiently in robotic sensor
networks (RSNs) and propose a new algorithmic frame-
work called budget-constrained covering salesman prob-
lem (i.e., BC-CSP). Given an RSN graph wherein sensor
nodes have data of different values and a robot (i.e., sales-
man) with limited battery power (i.e., budget), the goal of
the BC-CSP is to find a data-covering tour for the robot to
collect data with the maximum sum of values before run-
ning out of battery and returning to the depot. We propose
a suite of algorithmic solutions to solve the BC-CSP, in-
cluding Integer Linear programming (ILP), Greedy, and
Random algorithms. Using commonly adopted mobility
models of the robots and realistic battery power measure-
ments from robotic applications, we show that a) Greedy
performs very close to ILP, collecting the number of pack-
ets within 4.3% to 14.2% of ILP, and b) Greedy signifi-
cantly outperforms Random by collecting between 41.9%
and 80.1% more packets.

Keywords – robotic sensor networks, budget-constrained
covering salesman problem, algorithms.

1. Introduction

Background and Motivation. Robotic sensor networks
(RSNs) are wireless sensor networks consisting of static
sensors and mobile robots that collectively perform sens-
ing, communication, and actuation in physical environ-
ments [1]. RSNs significantly enhance our ability to moni-
tor and interact with the physical world. The wide range of
land applications of the RSN includes industry automation
[2], security and intrusion detection [3], and environmental
monitoring and disaster relief [4].

For robots to operate at the above large-scale sensing
applications, they must be untethered and powered by
rechargeable batteries. A vital performance measurement
of a modern rechargeable battery is its energy density, the
amount of energy it can store with a given weight or vol-
ume. Although various efforts have been proposed to in-
crease the energy density of Li-ion batteries [5], one of the
most popular commercial energy sources, its current en-
ergy density value of 250 Wh/kg makes it too hefty for a

mobile robot to move around even for a couple of hours.

Research Question. Therefore, it could happen that the
robot does not have enough battery power to visit all
parts of the sensing area in an RSN application. This is
especially true for many large-scale sensing applications
such as disaster relief and underwater exploration, wherein
robots are dispatched into a vast area for a relatively long
period (e.g., one day). In this paper, we specifically focus
on a robot’s limited battery power and a following ques-
tion: how to find a path for a battery-constrained robot to
maximize its data-collection performance in a large-scale
RSN application?

Our Contributions. In our RSN model, the sensor nodes
have already generated various data packets from the en-
vironment. We use the number of data packets to indicate
the value of information available at a node (thus the im-
portance of visiting this node by the robot). A robot with
limited battery power is dispatched from a depot of the
RSN into the network to collect those data packets. The
depot consists of a base station, wherein the data brought
back by the robot can be uploaded for further analysis and
actuation, and a charging station, wherein the robot can be
fully recharged. The robot collects the data packets wire-
lessly from the sensor nodes it visits and from all the sensor
nodes within its wireless data-collecting range. We say the
robot covers the sensor nodes from which it collects pack-
ets. The goal is for the robot to visit a sequence of sensor
nodes (referred to as a data-covering route) to collect as
many data packets as possible before it runs out of battery
power and returns to the depot, where the robot uploads its
collected data packets and fully recharge its battery power.
We refer to this problem as data collection in RSNs (DCR).

Underlying DCR is a new graph-theoretical prob-
lem, which we call budget-constrained covering salesman
problem (i.e., BC-CSP). Given a graph wherein each node
has a prize, each edge has a cost, and a salesman with a
limited budget, the BC-CSP aims to find a Hamiltonian
covering tour that collects the maximum amount of prizes
within the budget. Here, “covering” means that the sales-
man collects prizes from the nodes he visits and those
within some distance from a visited node. To the extent of
our knowledge, BC-CSP has not been identified and solved
by the network community.

We design a suite of algorithms, including optimal in-
teger linear programming (ILP) and heuristic greedy and
random algorithms to solve the BC-CSP. Using commonly
adopted mobility models of the robots and realistic bat-
tery power measurements ot robots, we show that a) greedy
performs very close to ILP, collecting the number of pack-
ets within 4.3% to 14.2% of ILP, and b) greedy signifi-
cantly outperforms random by collecting between 41.9%
and 80.1% more packets.

2. Problem Formulation of DCR

System Model. We model the RSN as an area of
len meter × wid meter, where n sensor nodes Vs =
{1, 2, ..., n} are randomly placed inside the RSN. Sen-
sor node i ∈ Vs is located at (xi, yi), 0 ≤ xi ≤ len,
0 ≤ yi ≤ wid, and it has generated di > 0 data pack-
ets, each is of b-bit. A depot, denoted as s = (0, 0), is
located at one corner of the RSN. The depot has the func-
tions of both a base station for the robot to upload its col-
lected packets and a charging station to charge the robot
when it returns from its data-collecting trip. Let c(i, j)
denote the Euclidean distance between i, j ∈ V , where
V = Vs ∪ {s}; c(i, j) =

√
(xi − xj)2 + (yi − yj)2. We

assume the robot has a wireless sensing range of Tr; that
is, the robot can sense and collect packets from any sen-
sor nodes within Tr distance. We refer to Tr as the robot’s
data-covering range. 2

A

D
E

B

G H

C

F

I

:depot :sensor

Figure 1. An example.

Mobility Graph and Data
Collection Graph. There
are two different graphs for
the RSN. First, the robot’s
movement can be character-
ized by a complete graph
G(V,E), where the weight
w(i, j) of any edge (i, j) ∈
E is c(i, j) × µ, the robot’s
mobility energy consump-
tion moving from i to j. We
refer to this complete graph as the mobility graph of the
RSN. On the other hand, the robot’s data-collecting be-
havior is modeled by a data collection graph G1(V,E1),
where an edge (i, j) ∈ E1 if c(i, j) ≤ Tr, ∀i, j ∈ V .
For any node i ∈ V , denote i’s 1-covered nodes as N1

i =
{j|(i, j) ∈ E1}. When the robot visits i, it collects pack-
ets from i and all its 1-covered nodes N1

i (if there are any).
Then both node i and its 1-covered nodes N1

i are covered
by the robot. Note that G1 is a subgraph of G. We thus use
the mobility graph G as the input graph for the DCR.

Energy Model. There are two primary components of a
robot’s energy consumption during its data-collecting pro-
cess [6]. One is its mobility energy, the energy associated
with the robot’s movement that overcomes the friction be-

tween its wheels and the terrain. The maximum distance a
wheeled robot of battery power E can move is d = E

w×Ccrr

[6]. Here, Ccrr is the rolling friction coefficient of the ter-
rain, and w is the robot’s weight. We define a robot’s mo-
bility coefficient as the battery power consumed per unit of
traveled distance and denote it as µ; µ = w × Ccrr. For a
robot to move l meters, its mobility energy consumption,
denoted as Em, is Em = µ× l.

The other component is robotics energy Ec, which pow-
ers the robot’s sensing, computing, and communication
capabilities. In data collection, Ec is mainly the robot’s
wireless energy consumption when sensing and collecting
data packets from sensor nodes. For a robot to collect a
data packet of b-bit within Tr distance, its robotics energy
Ec = ϵe · b, where ϵe = 100nJ/bit is the energy consump-
tion per bit on the circuit hardware of the robot [7].

Problem Formulation of DCR. Given the mobility graph
G, let R = {s, t1, t2, ..., ta, s} be a data-covering tour of
the robot, where the robot starts from depot s, visits a se-
quence of a distinct sensor nodes tj ∈ Vs, 1 ≤ j ≤ a,
1 ≤ a ≤ n, to collect the data packets from tj and its 1-
covered nodes, and returns at depot s before running out
of battery. The mobility energy of the robot along R is
thus Em = µ ×

(
c(s, t1) +

∑a−1
i=1 c(ti, ti+1) + c(ta, s)

)
.

Let NR =
⋃a

j=1 N
1
tj denote all the sensor nodes that are

1-covered by at least one node in R. Denote the total num-
ber of data packets the robot collects when moving along
R as DR; DR =

∑
j∈R∪NR

dj · b. Thus the robotics en-
ergy of the robot is Ec = ϵe ∗DR. Denote the total battery
power spent by the robot along R as ER; ER = Em +Ec.
Given the initial battery power E of the robot, the goal of
the DCR is to find the robot an optimal data-covering tour
R to maximize DR while ER ≤ E .

EXAMPLE 1: Fig. 1 shows a small RSN with nine
nodes, wherein node G is the depot and other nodes are
sensor nodes (we use the grid network only for illustration
purposes). For clarity, we only show the data collection
graph, and each sensor node has one data packet available;
the weight of each edge is one unit (i.e., the mobility en-
ergy of the robot on each edge is one unit). The robot’s
initial battery power E = 4.

Given this battery constraint, there are several feasible
data-covering tours for the robot: a) G-H-E-D-G (solid
blue lines), b) G-H-I-H-G (dashed blue lines), and c) G-
D-A-D-G (dashed blue lines). Tour a) collects a maxi-
mum of 7 data packets while tours b) and c) each collect 5
data packets, all giving the robot a remaining battery power
of zero when it returns to G. Other feasible tours involve
the robot moving directly between G and E; they are not
optimal. E.g., G-E-H-G collects 6 data packets, with a
remaining energy of 2−

√
2 for the robot.

BC-CSP. Given a complete graph G′(V ′, E′) where a
node i ∈ V ′ has a prize pi ≥ 0 and an edge (u, v) ∈ E′

has a weight w(u, v) ≥ 0. Each node i ∈ V ′ can cover
a subset set of nodes Si ⊂ V ′, referring to i’s covering
set. A traveling salesman is located at r ∈ V ′ and has
a budget of B, the maximum distance he can travel be-
fore returning to r. When the salesman visits a node i,
he can collect prizes from i and all nodes in Si (if they
are still available). We assume each prize can be collected
at most once. Given a prize-covering cycle R = {r =
v1, v2, v3, ..., vx = r} of the salesman, the total prize it
collects is PR =

∑
i∈R∪{j|j∈Si∧i∈R} pi and the cost along

R as CR =
∑x−1

i=1 w(vi, vi+1). The BC-CSP aims to
find a R to maximize PR under the budget constraint that
CR ≤ B. BC-CSP is NP-hard as its special case of CSP,
where B = +∞, is NP-hard [8]. We give the theorem
below without proof due to space constraints.

Theorem 1: DCR on the mobility graph G(V,E) is a
BC-CSP on G′(V ′, E′).

3. An Optimal ILP Algorithm

We formulate DCR as an ILP, as shown in ILP (A). We
introduce four decision variables: xi,j indicating if edge
(i, j) is on the data-covering tour of the robot; yi indicating
if node i is visited by the robot (i.e., on the data-covering
tour); zi indicating if node i’s data packets are collected by
the robot (i.e., i is either visited by the robot or 1-covered
by a node visited by the robot). ui is a position variable
showing the order in which the node i is visited. us = 1 as
s, being the depot, are both starting and ending nodes.

(A) max
∑
j∈Vs

di · zi (1)

s.t.
xi,j , yi, zi ∈ {0, 1}, ∀i, j ∈ V (2)∑
j∈Vs

xs,j =
∑
i∈Vs

xi,s = 1 (3)

∑
j∈V

xi,j =
∑
j∈V

xj,i = yi ≤ 1, ∀i ∈ Vs (4)

∑
i∈V

∑
j∈V

(di,j · xi,j · µ) ≤ E , (5)

zi ≥ yi +
∑

j:c(i,j)≤Tr

yj , ∀i ∈ Vs (6)

2 ≤ ui ≤ n, ∀i ∈ Vs (7)
ui − uj + 1 ≤ n · (1− xi,j). ∀i, j ∈ Vs (8)

Objective function 1 is to maximize the total number of
data packets collected from all the sensor nodes covered
by the robot. Constraint 2 shows the integer constraints of
xi,j , yi, and zi. Constraint 3 ensures that the data-covering
tour starts from and ends at depot s. Constraint 4 ensures
that each sensor node in Vs is visited by the robot at most

once. Constraint 5 enforces the battery power constraint of
the robot. Constraint 6 is the covering constraint, indicat-
ing that if a node is visited or within Tr of any visited node,
it is covered by the robot, and the robot collects its packets.
Constraints 7 and 8 are Miller–Tucker–Zemlin (MTZ) for-
mulation for subtour elimination [9] that guarantee the fi-
nal data-covering tour is one tour instead of multiple tours.

4. Greedy Data-Covering Algorithms

As the above ILP(A) is time-consuming to compute, we
present two efficient and easy-to-implement algorithms:
the prize-based covering greedy algorithm (Algo. 1) and
a random covering algorithm. We give definitions that are
conducive to the design of Algo. 1 below.

Definition 1: (Battery-Feasible Sensor Nodes.) Given
that the robot is currently located at node i ∈ V and with
battery B, the set of sensor nodes U that have not been vis-
ited by the robot, its battery-feasible sensor nodes, denoted
as F(i, B, U), is the set of sensor nodes that the robot has
not visited and that it has sufficient battery to travel to and
then return to s. F(i, B) = {j|

(
c(i, j) + c(j, s)

)
× µ ≤

B ∧ j ∈ Vs ∧ U}. 2

Definition 2: (Prize at a Sensor Node.) Given a sen-
sor node i ∈ Vs, its available prize, denoted as pi, is all
the data packets that can be collected by the robot when
it visits i. I.e., pi =

∑
j∈Ni∪{i} d

c
j , where Ni is i’s 1-

covered nodes, and dcj is the current number of data pack-
ets available at j. Initially, dcj = dj , and it becomes 0 when
the robot collects j’s packets. We denote a node i’s initial
prize as poi =

∑
j∈Ni∪{i} dj . 2

Definition 3: (Covered Prize-Cost Ratio of a Battery-
Feasible Sensor Node.) Given the robot’s current location
i, for a battery-feasible node k ∈ F(i, B, U), its covered
prize-cost ratio, denoted as pcr(i, k), is the ratio between
the prize available at k and the battery consumption of the
robot moving from i to k. That is, pcr(i, k) = pk

c(i,k)×µ . 2
Definition 4: (2-Covered Nodes.) Given a node j, its

2-covered nodes are the 1-covered nodes of any 1-covered
node of j that are not 1-covered nodes of j, denoted as N2

j .
That is, N2

j = {i|i ∈ N1
k ∧ k ∈ N1

j ∧ i /∈ N1
j }. 2

Greedy Algorithm. Algo. 1 works as follows. First, all
variables related to the robot’s data-covering tour are ini-
tialized (line 1). It computes the initial prizes of all sen-
sor nodes (lines 2-5) and then takes place in rounds. In
each round, located at current node i, the robot visits a
battery-feasible node j with the largest covered prize-cost
ratio and updates all the route-related information (lines 7-
10). It then collects j’s prize pj by collecting packets from
j and its 1-covered nodes and prizes of all the sensor nodes
involved (lines 11-31), illustrated next. This continues un-
til it can no longer find a battery-feasible node, at which
point it returns to s and outputs the data-covering tour, the

j k

l

(a)

Tr
Tr j k

l
Tr

Tr

(b)
Figure 2. Prize-updating when node j is visited, where k
is j’s 1-covered node. (a) l is a 1-covered node of both j
and k. (b) l is k’s 1-covered node and j’s 2-covered node.

(a)Collected Packets. (b)Traveled Distance.

Figure 3. Comparing Greedy, Random, and ILP small-scale RSNs.

collected packets, and the energy cost of the robot on this
route (lines 34-35). In Algo. 1, the robot visits at most
n = |Vs| nodes. At each node j, it updates the prizes by
checking all of its 1-covered and 2-covered nodes, which
is O(n2). Its time complexity is O(n3). Fig. 2 shows the
details of the prize-updating process.

Random Covering Algorithm. We propose a random
covering algorithm. The only difference between Greedy
and Random is line 7 in Algo. 1, wherein Greedy chooses
a feasible node with the largest prize-cost ratio to move to,
while in Random, it instead randomly chooses one.

5. Performance Evaluation

Experiment Setup. We compare ILP(A) (ILP), greedy
algorithm viz. Algo. 1 (Greedy), and random algorithm
(Random). We use CPLEX [10] for ILP computation. We
use small RSNs of 1000m×1000m, where 20 sensor nodes
are randomly placed when the ILP optimal solutions are
computed, and large RSNs of 10, 000m×10, 000m, where
100 sensor nodes are randomly placed. In either case, the
depot s is at (0, 0) of the RSN. Each sensor generates a
random number of data packets in [0, 100], each of 1024B.
We set the mobility energy coefficient µ as 100 Joules/m
following [6]. Each data point in our plots is an average of
ten runs, for which a different RSN instance is constructed
and applied to all the algorithms for fair comparison. The
error bars indicate 95% confidence intervals. We write our
simulator in Java on Windows 11 with AMD Ryzen 5 4000

(a)Tr = 150m. (b)Tr = 300m.

Figure 4. Comparing Greedy and Random in large-scale RSNs.

Series 6-Core and 24GB of DDR4 Memory.

Comparison in Small RSNs. Fig. 3 compares the three
algorithms in small RSNs with the initial battery E of the
robot varied from 50Wh to 110Wh. With a mobility co-
efficient of µ = 100 Joules/m, this battery range means
the robot can travel a distance between 1800m and 3960m.
Fig. 3(a) shows that with the increase of battery power,
more packets are collected for all the algorithms. Being
an optimal solution, ILP always collects the most packets.
Greedy performs very close to ILP, though, collecting the
number of packets within 4.3% to 14.2% of ILP. Besides,
Greedy significantly outperforms Random by collecting
between 41.9% and to 80.1% more packets. Fig. 3(b)
shows the distances traveled by the robot, showing that in
all the test cases, battery power is a constraint limiting the
traveling distance of the robot in all the algorithms. Table 1
shows the execution time of different algorithms w.r.t. E .
The execution time of both Greedy and Random is one or-
der of magnitude smaller than that of ILP, while Random
takes a bit less time.

Comparison in Large-scale RSNs. Fig. 4 compares the
Greedy and Random in large-scale RSNs of 10, 000m ×
10, 000m. Fig. 4(a) shows the data packets collected by
both algorithms when Tr is 150m. Greedy collects up
to five times more packets than Random, showing that
Greedy is more effective. Fig. 4(b) increases the Tr to
300m and shows that Greedy outperforms Random by up
to four times. Both algorithms collect almost the same
amounts of packets with different Tr. This is because the
networks are very sparse, meaning not a lot of extra nodes
are covered by the increase in transmission range.

6. Conclusions

We propose a new algorithmic framework called budget-
constrained covering salesman problem (i.e., BC-CSP).

Table 1. Execution Time (ms) of Different Algorithms.
Battery power E (Wh) Greedy Random ILP

50 36 23 256
70 61 18 461
90 86 28 769

110 111 37 906

BC-CSP is inspired by robotic sensor networks (RSNs),
wherein battery-constrained mobile robots, including
drones and UAVs, are dispatched to collect sensing data
or maintain the network in many sensing applications. We
design algorithmic solutions to solve the BC-CSP, includ-
ing ILP, greedy, and random heuristic algorithms. We
show that greedy outperforms the random while perform-
ing close with the ILP in terms of collecting packets while
both greedy and random are more time-efficient than ILP.

Acknowledgment

This work was supported by the NSF Grants CNS-
2137791, HRD-1834620, and CNS-2240517.

References
[1] Ghosh P, Gasparri A, Jin J, Krishnamachari B. Robotic

Wireless Sensor Networks. Springer International Publish-
ing, 2019; 545–595.

[2] Li H, Savkin AV. An algorithm for safe navigation of mo-
bile robots by a sensor network in dynamic cluttered in-
dustrial environments. Robotics and Computer Integrated
Manufacturing 2018;54:65–82.

[3] Mahjoub W, Nakkach C, Ezzedine T. Design of au-
tonomous wireless sensor network using mobile robots for
intrusion detection and border surveillance. In Proc. of In-
ternational Wireless Communications and Mobile Comput-
ing (IWCMC). 2023; .

[4] Wichmann A, Korkmaz T, Tosun AS. Robot control strate-
gies for task allocation with connectivity constraints in
wireless sensor and robot networks. IEEE Transactions on
Mobile Computing 2018;17(6):1429–1441.

[5] Khan FMNU, Rasul MG, Sayem ASM, Mandal N. Max-
imizing energy density of lithium-ion batteries for electric
vehicles: A critical review. Energy Reports 2023;9:11–21.

[6] Xiao X, Whittaker WL. Energy considerations for wheeled
mobile robots operating on a single battery discharge. Tech-
nical Report CMU-RI-TR-14-16, Pittsburgh, PA, August
2014.

[7] Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-
efficient communication protocol for wireless microsensor
networks. In Proc. of HICSS 2000; .

[8] Current JR, Schilling DA. The covering salesman problem.
Transportation science 1989;23:208–213.

[9] Miller–tucker–zemlin (mtz) subtour elimination constraint.
Https://how-to.aimms.com/Articles/332/332-Miller-
Tucker-Zemlin-formulation.html.

[10] Ibm cplex optimizer. Https://www.ibm.com/analytics/cplex-
optimizer.

Address for correspondence:

Christopher Beauchamp
Department of Computer Science, California State University
Dominguez Hills
cbeauchamp2@toromail.csudh.edu

Algorithm 1 Greedy Covering Algorithm.
Input: A mobility graph G(V,E), di, Tr, µ, E , and depot

s,
Output: A data-covering tour R, PR, and CR.
Notations: R: the data-covering tour, starting from s;

CR: the energy cost of the robot on R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited sensor nodes, initially Vs;
i: the node where the robot is located currently;
Aj : nodes whose packets are collected when j is vis-
ited;
B: current battery power of the robot, initially E ;

1: i = s, R = {s}, CR = PR = 0, U = Vs, B = E ;
2: for (each i ∈ Vs) do
3: N1

i = {j|j ∈ Vs ∧ c(i, j) ≤ Tr ∧ j ̸= i};
4: pi = p0i =

∑
j∈N1

i ∪{i} dj ;
5: end for

// if there are still battery-feasible nodes for the robot
6: while (F(i, B, U) ̸= ϕ) do
7: j = argmaxk∈F (i,B,U)pcr(i, k);
8: R = R ∪ {j}, PR = PR + pj ;
9: CR = CR + c(i, j)× µ;
10: B = B − c(i, j)× µ, U = U − {j};
11: Aj = ϕ (empty set), pj = 0;
12: if (dj ̸= 0) then
13: dj = 0;
14: Aj = {j};
15: end if
16: for (each k ∈ N1

j) do
17: if (dk ̸= 0) then
18: pk = pk − dk, dk = 0; Aj = Aj ∪ {k};
19: end if
20: end for
21: for (each k ∈ N1

j) do
22: for (each l ∈ N1

k) do
23: if (l ∈ Aj) then
24: pk = pk − dl;
25: else
26: if (l ∈ N2

j ∧ k ∈ Aj) then
27: pl = pl − dk;
28: end if
29: end if
30: end for
31: end for
32: i = j;
33: end while
34: R = R ∪ {s}, CR = CR + c(i, s)× µ;
35: return R, PR, CR.

