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Abstract—We design a truthful and efficient auction mech-
anism for data preservation in the base station-less sensor
networks (BSNs). BSNs refer to many emerging sensing ap-
plications that are deployed in challenging environments such
as underwater or remote areas. In these environments, as
installing a high-power base station near the sensing field is
not feasible, sensory data must be preserved inside the network
before uploading opportunities arise. We consider that all the
sensor nodes are intelligent and selfish and propose an efficient
auction mechanism to motivate the sensor nodes to achieve
energy-efficient data preservation in the BSN. We investigate
the rationality, truthfulness, and energy efficiency of the auction
mechanism. Via theoretical and simulation results, we show that
our auction mechanism is not only time- and energy-efficient but
also guarantees the truthfulness for the selfish sensor nodes.

Keywords – Auction Mechanism, Base Station-less Sensor
Networks, Data Preservation, Truthfulness

I. Introduction

Background. With the strides made in sensor technologies
over the past decade, sensor networks have been developed in
frontiers that used to be inaccessible or hostile (e.g., deepwater
exploration [8], [4] and volcano eruption monitoring [5]). In
such challenging environments, as it is infeasible to deploy
high-storage and high-power base stations near the sensing
field for data collection, autonomous underwater vehicles
(AUVs) [4] or robots [25] are usually dispatched into the
sensing field to collect the sensory data. We refer to such
sensor networks as base station-less sensor networks (BSNs).

Our network model is as follows. Some sensor nodes are
close to the events of interest and constantly generate sensory
data, thus depleting their storage spaces; they are referred to
as source nodes. Before the arrival of the aforementioned
uploading opportunities such as AUVs and robots, source
nodes need to offload their overflow data to nearby sensor
nodes with available storage (referred to as storage nodes) to
prevent data loss. We call this process data preservation in
BSNs. The main challenge of data preservation is achieving
energy efficiency, as all the sensor nodes are battery-powered.

This paper proposes an auction-based mechanism for
energy-efficient data preservation in the BSN. Auction theory
[10], [1] is an applied branch of economics that studies how to
achieve predictable outcomes in auction markets consisting of
sellers and buyers of some objects. Allowing sellers to raise

higher revenues and buyers to procure at a lower cost, the
auction is a popular incentive scheme that efficiently allocates
sellers’ resources to buyers at competitive prices. In particular,
it has been applied to solve many distributed task and resource
allocation problems in engineering and computer science [19].

In recent years, equipped with artificial intelligence and
machine learning techniques, the newly developed sensors
have become more intelligent [3]. Not only can they sense,
compute, and communicate like traditional sensors, but they
can perceive, reason, and learn from each other and the
environment. Meawhile, although sensor nodes are getting
more intelligent, they are generally still resource-constrained
with limited processing power, memory and storage capacity,
and battery power. As such, they could behave selfishly, only
to conserve their own resources and thus have little incentive
to participate in the assigned tasks. Take our data preservation
problem, for example. In a selfish and distributed environment,
storage nodes could be unwilling to spend their limited battery
power and storage capacities to help store overflow data
packets from source nodes. Incentivizing selfish storage nodes
to participate in energy-efficient data preservation in the BSN
becomes a critical problem. We refer to it as selfish data
preservation problem.

Our Contributions. A few works studied selfish data preser-
vation problems [20], [12], [28]. Yu et al. [28] utilize the
Vickrey-Clark-Groves (VCG) mechanism [23], a well-known
mechanism design methodology, to achieve truthfulness and
network efficiency in data preservation. However, it assumes
that data packets are of the same sensor type with the same
sizes. With this assumption, they show that the data preserva-
tion problem is equivalent to the minimum cost flow problem
[2], which can be solved optimally and efficiently. It shows
that the VCG mechanism is sufficient to motivate the selfish
storage nodes in the data preservation of the BSN [28].

However, the above assumption is no longer valid as nowa-
days, a sensing application could consist of different types of
sensors (e.g., video cameras, voice recorders, and thermome-
ters) collecting data of different physical attributes from the
environment. Consequently, the sensory data generated from
different types of sensors may have very different formats
and sizes. For example, in an underwater acoustic scenario



for submarine surveillance and monitoring [4], the audio clips
are a few KBs per packet, whereas the high-resolution picture
frames are a few MBs. As such, the data preservation problem
becomes NP-hard [21]. Nisan and Ronen [17] have shown
that when applying VCG mechanisms to NP-hard problems
and replacing optimal outcomes with computationally tractable
approximation or heuristic algorithms, the VCG-based mech-
anism is no longer truthful.

In this paper, we consider that data packets in the BSN could
have different sizes and propose a new auction mechanism
for data preservation in the BSN. It is based on a sealed-
bid second-price auction [10]. We model the data preservation
process as an auction market, in which the storage and source
nodes are the sellers and buyers of sensor resources (i.e.,
storage spaces and battery power), respectively. In particular,
storage nodes submit bids with claimed energy costs of storing
the overflow data packets from source nodes, and the source
nodes provide payment to the storage nodes following our
payment model. We propose an efficient auction mechanism to
decide the winning bids and their payments. We investigate the
rationality, truthfulness, and energy efficiency of the auction
mechanism. Via theoretical and simulation results, we show
that our auction mechanism is not only time- and energy-
efficient but also guarantees the truthfulness for the selfish
sensor nodes. That is, truth-telling of its energy cost is a
dominant strategy for the sensor nodes.

Paper Organization. Section II reviews all the related work to
give a context to our contribution. Section III formulates the
data preservation problem in the BSN. Section IV presents
our auction mechanism and proves its truthfulness and other
related properties. Section V presents our detailed simulation
results and analysis. Section VI concludes the paper with a
discussion of future work.

II. Related Work

Auction theory has been applied extensively to solve re-
search problems in several areas including spectrum allocation
[31], [30], edge computing [11], social networks [26], mobile
phone crowd sensing and sensor networks [27], [24], [13],
[15], [16], [7]. As our work is about data preservation in the
BSN, we review the literature on mobile crowd sensing and
sensor networks to give a context of our contributions in this
field. Please refer to [29], [18] for a more extensive review.

Auctions in Mobile Crowd Sensing Research. Mobile phone
sensing uses pervasive smartphones to collect and analyze
data. Yang et al. [27] designed incentive mechanisms for
mobile phone sensing to attract more user participation. They
designed an incentive mechanism for a platform-centric model
using a Stackelberg game, where the platform is the leader
while the users are the followers. For a user-centric model,
they designed an auction-based incentive mechanism that is
computationally efficient, individually rational, profitable, and
truthful. Wen et al. [24] proposed an auction-based incentive
mechanism where the phone users are paid off based on the

quality of sensed data. They theoretically prove that the mech-
anism is truthful, individually rational, platform profitable, and
social welfare optimal. Mak [13] extended the optimal auction
theory to a crowdsourcing application, where the bid for work
consists not only of the unit cost but also the maximum amount
of work the workers are willing to do, and proved that a
dominant strategy exists in this case. However, in the above
works on mobile phone sensing auction mechanism design,
critical network-related properties such as network topology
and the capacity of networked nodes are largely ignored. In
this paper, we consider these parameters and study their effect
on mechanism design.

Auctions in Sensor Network Research. Auctions have also
been applied in sensor network research. Melodia [15] was one
of the first to introduce auction theory into sensor networking
research. In particular, they designed a localized auction
protocol to coordinate between the sensors, which sense in-
formation, and the actors, which analyze the data and take
action. Their auction mechanism is essentially a single-round
sealed-bid auction [14], where each buyer submits its bids in
one shot irrespective of the bids from other buyers. Neda [16]
formulated the real-time distributed task allocation problem in
wireless sensor networks as incomplete information, incentive
compatible, and economically robust reverse auction game.
The main objective of this scheme is to maximize the overall
network lifetime, considering the application’s deadline as
the constraint. Zheng et al. [7] proposed an auction-based
adaptive sensor activation algorithm for target tracking in
wireless sensor networks, wherein the cluster heads receive
bids from nodes to form clusters. However, all of the above
works assume a traditional sensor networking model where
a base station is available to collect the data. However, in
the data preservation of the BSN, we need to decide where
the overflow data packets will be stored. Thus, our auction
mechanism is dramatically different from the existing works.

Selfish Data Preservation in the BSN. A few works studied
data preservation problems with selfish sensor nodes [20], [12],
[28]. Rivera et al. [20] analyzed the performance of the Nash
Equilibria of data preservation in terms of the price of anarchy
and the price of stability [9], two main concepts in economics
and game theory that measure the system degradation due to
selfishness. Yu et al. designed a computationally efficient and
truthful data preservation game based on the Vickrey-Clark-
Groves (VCG) mechanism [23], a well-known mechanism
design methodology to achieve truthfulness and efficiency.
Ly al. [28] further considered that data packets could have
different values and designed a data preservation game with a
performance guarantee. However, one common assumption of
all the work is that the data packets to be preserved have the
same sizes. The data preservation problem can then be solved
optimally and efficiently, and an efficient VCG mechanism can
be utilized to motivate the selfish nodes.

In contrast, in this paper, we assume that data packets could
have different sizes, wherein the data preservation problem
becomes NP-hard [21]. As the VCG-based mechanism is



no longer necessarily truthful for NP-hard problems [17],
we propose a new auction mechanism based on sealed-bid
second-price auction [10], wherein bidders submit bids without
knowing others’ bids and the highest bidder wins, but the price
paid is the second-highest bid.

Other Related Works. Our work is inspired by [22], which
stimulates mobile devices to execute tasks for others in the mo-
bile device cloud environment. In particular, they studied two
task models, heterogeneous and homogeneous task models,
which assume the different and the same resource requirements
of the tasks, respectively. For the heterogeneous task model,
they propose an efficient heuristic winning-bids determination
algorithm to allocate the tasks and decide the payment of each
seller for its winning bids. For a homogeneous task model,
they designed a VCG-based auction mechanism to determine
the payment of each bid. They show that both mechanisms
achieve several desirable properties, such as individual ratio-
nality, truthfulness, and computational efficiency.

III. DATA PRESERVATION PROBLEM

System Model. We model a BSN as an undirected graph
G(V,E), where V = {1, 2, ..., n} is the set of n sensor nodes,
and E is the set of edges. There are k < n source nodes Vs =
{1, 2, ..., k} and n−k storage nodes Vr = {k+1, k+2, ..., n}.
The sensory data are modeled as a sequence of data packets,
each of which could have different sizes. In particular, we
assume that the overflow data packets from the same source
node have the same sizes, while packets from different source
nodes could have different sizes. Let gi > 0 be the size of
each overflow data packet (in bits) at source node i ∈ Vs.

Let di denote the number of overflow data packets source
node i ∈ Vs generates, which must be offloaded to some
storage nodes to avoid being lost. Let d =

∑k
i=1 di be the total

number of overflow data, and let D = {1, 2, ..., d} denote the
set of these d data packets. Let s(j) ∈ Vs, 1 ≤ j ≤ d denote
data packet j’s source node and Di be the set of data packets at
source node i; that is, Di = {j ∈ D|s(j) = i} and |Di| = di.
Let mi be the available free storage space (in bits) at sensor
node i ∈ V . Note that mi = 0 for i ∈ Vs while mi > 0
for i ∈ Vr. We assume that

∑n
i=k+1 mi >

∑k
i=1(di · gi);

otherwise, data preservation is not feasible.

Energy Model [6]. When node i sends a data packet to its
neighbor i′ over their distance li,i′ , the amount of transmitting
energy spent by i is Et

i (i
′) = a · ϵai · l2i,i′ + a · ϵei . Here,

ϵai = 100pJ/bit/m2 and ϵei = 100nJ/bit are the energy
consumption of transmitting one bit on the transmit amplifier
and circuit of node i, respectively. When node i′ receives a data
packet, the amount of receiving energy it spends is Er

i′ = a·ϵei′ .
Given an edge (i, i′) ∈ E, its weight w(i, i′) is the total energy
consumption of sending and receiving one packet from i to i′;
that is, w(i, i′) = Et

i (i
′) + Er

i′ .

Problem Formulation. We define a preservation function as
f : D → Vr, showing j ∈ D is offloaded from its source
node s(j) ∈ Vs to a storage node f(j) ∈ Vr along the shortest

TABLE I
NOTATION SUMMARY

Notation Description
G(V,E) BSN graph, V = Vs ∪ Vr , |V | = n
Vs Set of k source nodes
Vr Set of n− k storage nodes
di Number of overflow data packets at source node i ∈ Vs

gi Value of overflow data packets at source node i ∈ Vs

d Total number of overflow data packets
D The set of d overflow data packets
Di The set of overflow data packets at source node i
i, i′ Index for sensor nodes, 1 ≤ i, i′ ≤ n
j Index for overflow data packets, 1 ≤ j ≤ d
s(j) The source node of data j, 1 ≤ j ≤ d
mi Storage capacity of storage node i ∈ Vr

Et
i (i

′) Transmission energy spent by i to transmit one packet to i′

Er
i Receiving energy spent by i to receive one data packet

f Data offloading function
bi,j the bid (i.e., claimed energy cost) of storage node i to

store data packet j
ci,j the true cost of storage node i to store data packet j
pi,j the payment to storage node i for storing data packet j
πi,j πi,j = pi,j − ci,j , node i’s utility of storing data packet j
bi∗,j∗ The winning bid of storage node i storing packet j

path between them (referred to as data preservation path). Let
c(i, i′) be the cost of the data preservation path between source
node i and storage node i′. The goal of the data preservation
problem is to find an f to offload all the overflow packet D,
such that the total preservation cost C =

∑d
j=1 c

(
s(j), f(j)

)
is minimized under the storage constraint of storage nodes:
∀i ∈ Vr,

∑
1≤j≤d xi,j ·gs(j) ≤ mi, where xi,j = 1 if f(j) = i

and 0 otherwise. Table I shows all the notations.
Unlike the uniform data size case (i.e., all the data packets

have equal sizes), the data preservation problem for arbitrary
data sizes is APX-hard [21]. It is not only NP-hard, but also, a
polynomial time approximation algorithm is unlikely. Below,
we present a truthful and efficient auction mechanism for the
data preservation problem of arbitrary data sizes, considering
that sensor nodes are selfish.

IV. An Auction Mechanism for Data Preservation

Auction Model. We consider all the source nodes as buyers
and all the storage nodes as sellers. This is because source
nodes want their overflow packets preserved by the storage
nodes. To begin with the auction, each storage node i submits
its bids for all the d data packets: Bi = {bi,1, ..., bi,j , ..., bi,d},
where bi,j denotes the energy cost spent in storing data packet
j. Here, we assume each storage node i claims on behalf of
all other nodes involved in preserving the data packet finally
stored at i and compensates their cost accordingly. To assist
the communication between the buyers and sellers, a central
authority (i.e., auctioneer) collects the bids and computes the
winning bids and their corresponding payments following our
designed auction mechanism below.

As bi,j is storage node i’s private information unknown
to others, i may manipulate its claimed cost to gain higher
utility. Let xi,j denote if storage node i wins the bid to
data packet j (thus j is eventually stored at i following the
shortest path between them); xi,j = 1 if so and zero otherwise.
Thus to minimize the total preservation cost, the auctioneer
needs to determine the winning bids to minimize the total



claimed bids
∑

i∈Vr

∑d
j=1 bi,j under the storage constraint:∑d

j=1 xi,j · gs(j) ≤ mi, ∀i ∈ Vr while all the packets must be
offloaded for preservation:

∑
i∈Vr

xi,j = 1, ∀j ∈ D.

Auction Mechanism. The auction mechanism includes
Algo. 1, which determines the winning bids, and Algo. 2,
which is the payment model for the winning bids.

Determining Winning bids. Algo. 1 works as follows. It first
sorts all the bids bi,j in non-decreasing order of bi,j

gs(j)
(line

1), as the bid with smaller cost per unit packet size should
have higher chance to win the bid. It then sorts all the data
packets in non-decreasing order of their sizes (line 2). Then, it
works in iterations. In each iteration, it first selects the bid with
the smallest cost per unit packet size as the winning bid and
updates related information (lines 4 and 5). Let this storage
node and data packet pair be (i∗, j∗). It then removes all the
bids from B, where B = ∪n

i=k+1Bi, that claim data packet j∗

(lines 6-10). Finally, it updates the available storage capacity
of storage node i∗ and checks if it still has enough capacity to
store at least one data packet (lines 11-13). If not, it removes
all the bids of storage node i∗ from B (lines 14-18). The above
takes place until all the data packets receive a winning bid, at
which point the final set of winning bids is returned (line 21).
Algo. 1 takes |B| · log(|B|)+ d · log(d)+ d · |B|, where |B| is
the total number of bids and d = |D| is the total number of
data packets. As |B| = |Vr| · |D| = O(n · d), where n is the
total number of sensor nodes, the time complexity of Algo. 1
is O

(
n · d · (log(n · d) + d)

)
.

Algorithm 1: Determining Winning Bids.
Input: A BSN graph G(V,E), B = {bi,j}, i ∈ Vr, j ∈ D;
Output: A set of winning bids W ⊂ B.
Notations:
B: B = ∪n

i=k+1Bi is the entire set of bids;
D: set of data packets to be preserved;
W : final set of winning bids, initially empty;
xi,j : 1 if bi,j ∈ B is a winning bid, initially 0;
bi∗,j∗ : the winning bid in the current iteration;
1. Sort bi,j ∈ B in non-increasing order of bi,j

gs(j)
;

2. Sort j ∈ D in non-decreasing order of their sizes gs(j);
3. while (D is not empty)
4. Select the first available bid in B, denoted as bi∗,j∗ ,

as the winning bid; i.e., xi∗,j∗ = 1;
5. W = W ∪ {xi∗,j∗}, D = D − {j∗},

B = B − {bi∗,j∗};
6. for (each bid bi,j ∈ B)
7. if (j == j∗)
8. B = B − {bi,j}; // Remove bids bi,j∗ from B
9. end if;
10. end for;
11. mi∗ = mi∗ − gs(j∗);
12. Let the first data packet in D be j1;
14. for (each bid bi,j ∈ B)
15. if (i == i∗)
16. B = B − {bi,j}; // Remove bids bi∗,j from B

17. end if;
18. end for;
19. end if;
20. end while;
21. RETURN Set of winning bids W .

Payment Model. Next, we compute pi∗,j∗ , the payment to
storage node i∗ for its winning bid bi∗,j∗ . Our payment model
specified in Algo. 2 accomplishes this. It starts by removing
bi∗,j∗ from the entire bid set B = ∪n

i=k+1Bi and sorting
all the bids bi,j in non-decreasing order of bi,j

gs(j)
and all the

data packets in non-decreasing order of their sizes (lines 1-3).
It then chooses one winning bid from B − {bi∗,j∗}, which
is bi+,j+ , and updates all the related information (lines 6-
21). This continues until data packet j∗ appears in another
winning bid, say bi′,j∗ ; that is, storage node i′ wins its bid
to packet j∗ without the presence of the bid bi∗,j∗ . Finally,
we set pi∗,j∗ , the payment to winning bid bi∗,j∗ , as bi′,j∗ and
return it (lines 23-24). The time complexity of Algo. 2 is also
O
(
n · d · (log(n · d) + d)

)
.

Algorithm 2: Payment model of computing pi∗,j∗ .
Input: A BSN graph G(V,E), winning bids W = {bi∗,j∗};
Output: Payment pi∗,j∗ for bi∗,j∗ .
Notations:
pi∗,j∗ : the payment to node i∗ for its winning bid bi∗,j∗ ;
1. B = B − {bi∗,j∗};
2. Sort bi,j ∈ B in non-increasing order of bi,j

gs(j)
;

3. Sort j ∈ D in non-decreasing order of their sizes gs(j);
4. xi,j = 0, ∀bi,j ∈ B;
5. while (

∑
bi,j∗∈B xi,j∗ == 0 )

6. Let the first available bid in B be bi+,j+ ,
choose it as the winning bid; i.e., xi+,j+ = 1;

7. B = B − {bi+,j+}, D = D − {j+};
8. for (each bid bi,j ∈ B)
9. if (j == j+)
10. B = B − {bi,j}; // Remove bids bi,j+ from B
11. end if;
12. end for;
13. mi+ = mi+ − gs(j+);
14. Let the first data packet in D be j1;
15. if (mi+ < gs(j1))
16. for (each bid bi,j ∈ B)
17. if (i == i+)
18. B = B − {bi,j}; // Remove bids bi+,j from B
19. end if;
20. end for;
21. end if;
22. end while;
23. Assume xi′,j∗ = 1, then set pi∗,j∗ = bi′,j∗ ;
24. RETURN pi∗,j∗ .

Theoretical Analyses. Define the utility of storage node
i ∈ Vr for preserving data j ∈ D as πi,j . πi,j = 0 if



Fig. 1. The bids and payments of winning bids.

xi,j = 0, and πi,j = pi,j − ci,j if xi,j = 1. Our goal is
to design an auction mechanism so that each storage node is
willing to participate in the auction and tell the truth about
its data preservation cost. In other words, in the equilibrium
of the auction, each storage node bids its true cost of data
preservation, and its corresponding utility is non-negative. We
define these two conditions below:

(1). Truthfulness: The bid submitted by each storage node
for each data reflects the true cost of node i ∈ Vr for
preserving data j ∈ D. I.e., bi,j = ci,j .

(2). Individual Rationality: The utility of storage node i
for its data preservation is non-negative, i.e., πi,j ≥ 0,
∀i ∈ Vr and ∀j ∈ D.

Theorem 1: The auction mechanism given by Algos. 1 and
2 satisfies truthfulness for each storage node i ∈ Vr. I.e., bi,j =
ci,j is a weakly dominant strategy of node i ∈ Vr.
Proof: For storage node i, we need to prove that bi,j = ci,j
weakly dominates any other bid b′i,j ̸= ci,j .

First, consider b′i,j > ci,j . If node i wins or loses the bid for
preserving data j with either bi,j or b′i,j , its utility is bi′,j−ci,j
under Algorithm 2 with either bid when it wins, and its utility
is zero with either bid when it loses. Thus node i is indifferent
between bi,j and b′i,j . Instead, consider when i wins the bid
under bi,j but loses the bid under b′i,j . By Algo. 2, when it
wins under bi,j , its utility is bi′,j − ci,j ≥ 0 since bi′,j ≥ bi,j ;
while when it loses under b′i,j , its utility is zero. Thus bidding
bi,j weakly dominates bidding b′i,j .

Second, consider b′i,j < ci,j . Similarly, when node i wins
or loses the bid under either bi,j or b′i,j , its utility is the same
either way, and i is indifferent between bi,j and b′i,j . Instead,
consider when i wins the bid under b′i,j but loses the bid under
bi,j . By Algo. 2, when it wins under b′i,j , its utility is bi′,j −
ci,j < 0 since bi′,j < bi,j because bidding bi,j loses the bid;
while when it loses under bi,j , its utility is zero. Thus bidding
bi,j weakly dominates bidding b′i,j . We conclude that bi,j =
ci,j is a weakly dominant strategy of node i, ∀i ∈ Vr.

Theorem 2: The auction mechanism given by Algos. 1 and
2 satisfies individual rationality for each storage node i ∈ Vr.
Proof: We only need to show πi,j = pi,j − ci,j ≥ 0 for
xi,j = 1. According to Algo. 2, pi,j = bi′,j . Suppose bi′,j <
bi,j , then it holds that bi′,j/gs(j) < bi,j/gs(j). By Algo. 1, it
should be node i′ winning the auction for data j, not node

Fig. 2. Demonstrating Truthfulness.

i, a contradiction to xi,j = 1. Thus bi′,j ≥ bi,j and πi,j =
bi′,j − ci,j = bi′,j − ci,j ≥ 0.

V. Simulation Results

Simulation Setup. We write our simulator in Python on a
Mac Mini (M1, 2020) with an Apple M1 Processor and 8GB
of memory. We randomly place 100 sensor nodes in an area of
2000m× 2000m. Two nodes are connected if their distance is
less than or equal to 250m, the transmission range of sensor
nodes. Each source node has 100 data packets. We assume
packets from the same source node have the same sizes, while
packets from different source nodes are a random number in
[4KB, 8KB]. The storage capacity of each storage node is
25KB. The storage node is the seller and the bidder, and the
source node is the buyer. The storage node bids for each source
node using the shortest path energy consumption of one bit
between the source node and the storage node, while it can
lie about this cost. Each data point in the plots has an average
of 20 runs; a BSN instance is randomly generated in each. The
confidence interval is 95%. Below, we investigate our auction
mechanism’s rationality, truthfulness, and energy efficiency.

Investigating the individual rationality. Fig. 1 evaluates
the mechanism’s performance concerning rationality, where
there are 20 source nodes and 80 storage nodes. The depicted
figure reveals that all final payments for winners surpass their
respective submitted bids. Consequently, it can be inferred that
individual rationality is preserved within this mechanism.

Investigating the truthfulness. Fig. 2 investigates the mecha-
nism’s performance on truthfulness, where bids are generated
through the random selection of one seller. The x-axis is the
ratio of the submitted bid to the truthful valuation. It shows
that maximum utility is attained when the ratio equals 1,
representing a truthful bid. Conversely, any deviation from
this truthful cost results in a proportional loss of utility, as
evidenced by the respective ratio.

Investigating the energy efficiency. Fig. 3 compares the total
data preservation costs of three distinct data packet allocation
schemes viz. First Price, Second Price, and Exhaustive by
varying the number of source nodes. Here, the First Price is
Algo. 1, which finds the winning bids in one round; the Second



Fig. 3. Comparing three algorithms.

Price refers to our auction mechanism, including Algo. 1 and
Algo. 2; and the Exhaustive refers to an optimal algorithm
that enumerates all the allocation routes and finds the one
with minimum cost. A close alignment in total energy cost is
observed between the second price and exhaustive methods,
suggesting our mechanism approximates optimality. The first
price emerges as the most cost-efficient, albeit at the expense
of forgoing assurances of truthfulness and rationality.

VI. Conclusions
We designed a truthful auction mechanism for data preserva-

tion in the base station-less sensor networks operated in many
emerging sensing applications such as underwater exploration
and climate monitoring. Via theoretical and simulation results,
we showed that our auction mechanism is not only time-
and energy-efficient but also guarantees the truthfulness of
the selfish sensor nodes. In future work, we will study if
our greedy bid-selection algorithm achieves any performance
guarantees, that is, if the achieved total data preservation cost
is within a constant ratio of the optimal solution. We assume
all the sensor nodes have enough energy to participate in the
data preservation. When nodes have minimal battery power,
some could deplete their power and cause network partition
and interruption, drastically obstructing data preservation. As
an ongoing work, we are investigating how to augment our
auction mechanism to incorporate this challenging scenario.
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