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Abstract—We focus on robotic sensor networks (RSNs), wherein
mobile data collectors or robots are dispatched into the sensor
field to collect data from the sensor nodes, and study a new
algorithmic problem called battery-constrained data collection in
RSNs (BC-DCR). Given an RSN of sensor nodes with varying
numbers of sensory data packets to be collected and a robot with
limited battery power, the goal of the BC-DCR is to dispatch the
robot into the sensor field to collect the maximum number of
data packets before it runs out of battery power and returns
to the depot for recharging. Although extensive research has
been conducted to achieve various performance objectives of data
collection in RSNs, not much work has focused on the robot’s
limited battery power. It is critical to consider the robot’s limited
battery power to optimize the data-collecting performance of a
large-scale RSN. We show that at the core of the BC-DCR is a
new variation of the classic traveling salesman problem called
the Budget-Constrained Traveling Salesman Problem (BC-TSP),
which has not been adequately solved. We design an Integer
Linear Programming (ILP)–based optimal algorithm and a time-
efficient iterative greedy algorithm to solve the BC-TSP. Via
extensive simulations using real measurements of battery power
and mobility models of robots, we show that a) our algorithms
outperform the existing work by collecting 29.1% more packets
with the same battery power of the robots and b) our BC-TSP-
based approach achieves 32.02% more network lifetime of the
RSN compared to the existing approach.

Keywords – Data collection, robotic sensor networks,
budget-constrained traveling salesman problem.

I. INTRODUCTION

Background and Motivation. Since its inception in the 1990s,
wireless sensor networks, which help humans collect diverse
information from the physical world, have evolved from re-
search labs to real-world applications in military, health, and
industrial environments [24], [17]. In recent years, with the
strides made in robotic research and development [14], [9],
[18], mobile robots have been introduced into wireless sensor
networks to enhance their system performance and efficiency
in environment monitoring, intrusion detection, and search and
rescue [15], [10]. We refer to the sensor networks equipped
with the mobile robots as robotic sensor networks (RSNs).

One of the main tasks that mobile robots help to perform
in RSNs is data collection [8], [16]. In traditional sensor
networks, sensory data is transmitted back to the base station
in a multi-hop manner, which is energy-expensive and could
deplete the limited battery power of sensor nodes quickly.

By dispatching the battery-rechargeable robots into the sensor
field to collect the data and bring it back to the base station, the
energy bottleneck of the sensor network is migrated from the
sensor nodes to the mobile robots, which can be recharged
repeatedly. Consequently, the lifetime of the RSN is largely
prolonged, and its functionality is significantly improved.

There is extensive research to achieve various goals of data
collection in the RSNs, including minimizing the length of
data collecting tour or energy consumption of the robots [21],
[11], maximizing network lifetime or network utility [19],
[11], [28], and retrieving as much sensed data as possible given
a deadline [26], [29], [5]. However, almost all the existing
research assumes that the robot has enough battery power to
achieve any objective above by visiting any part of the sensor
field before returning to the depot. However, a robot with
finite (but rechargeable) battery power can only travel a limited
distance and visit some parts of a sensing field before running
out of battery and returning to the depot for recharging [22].
This is especially true for large-scale sensing applications, in-
cluding environmental monitoring and underwater exploration,
wherein robots are dispatched to collect data in a vast area.
Therefore, it is essential to consider the limited battery power
of a robot when it is operated in an RSN environment.

Our Contributions. In this paper, we focus on data collection
in RSNs where a robot cannot collect all the sensory data
in the RSN due to its battery constraint. We propose a new
algorithmic problem called BC-DCR: battery-constrained data
collection in RSNs. Given an RSN of sensor nodes generating
varying numbers of data packets and a robot with limited
battery power, the goal of the BC-DCR is to select a subset
of sensor nodes and find a route for the robot to visit them
to collect the maximum number of data packets before it
returns to the depot for recharging. Here, we assume the more
packets collected, the more information can be gathered from
the environment, thus, better performance of the RSN. BC-
DCR is a new problem that has not been studied in the RSN
community to the extent of our knowledge.

We show that BC-DCR is equivalent to a new variation of
the classic Traveling Salesman Problem [12], which we refer to
as the Budget-Constrained Traveling Salesman Problem (BC-
TSP). Given a weighted complete graph where each edge



has a weight, each node has a prize to be collected, and
a salesman has a given budget B. The BC-TSP is to find
a prize-collecting cycle R = {r = v1, v2, v3, ..., vx = r}
such that its total prize PR =

∑
i∈R pi is maximized while

its cost CR =
∑x−1

i=1 w(vi, vi+1) + w(vx, v1) ≤ B. BC-TSP
is NP-hard [27]. Although BC-TSP has been studied in the
theory community, we are the first to apply it to model data
collection in RSN using real parameters and measurements of
robot battery power and mobility models.

We design two algorithms to solve the BC-DCR: an Integer
Linear Programming (ILP)–based optimal solution and an
iterative greedy algorithm. Via extensive simulations using
real measurements of battery power and mobility models of
robots, we show that a) our algorithms outperform the existing
work by collecting 29.1% more packets with the same battery
power of the robot and b) our approach achieves 32.02% more
network lifetime of the RSN compared to the existing literature
using a different approach [21].

Paper Organization. Section II formulates the BC-DCR.
Section III proposes two combinatorial algorithms, including
an ILP optimal solution and an efficient greedy heuristic
algorithm, to solve the BC-DCR. Section IV compares our
algorithms with the existing research and discusses the results.
Section V reviews all the related work. Section VI concludes
the paper with future works.

II. PROBLEM FORMULATION OF BC-DCR

Network Model. We model the RSN, shown in Fig. 1(a),
as a rectangular area of l meters by m meters. Let Vs =
{1, 2, ..., |Vs|} denote the set of |Vs| sensor nodes randomly
located in the RSN, with i ∈ Vs located at the location (xi, yi),
where 0 ≤ xi ≤ l and 0 ≤ yi ≤ m. Each sensor node i ∈ Vs

has di ≥ 0 number of data packets to be collected; each packet
has a size of k bits. Let r = (0, 0) denote the depot of the RSN,
wherein both a base station and a charging station are installed.
dr = 0 as r is not a sensor node. The robot is dispatched from
the depot to collect data in the RSN. Before its battery power
runs out, it returns to the depot to upload the data to the base
station and recharge its battery at the charging station. Let
V = Vs ∪ {r} be the set of sensor nodes and the depot. Let
d(i, j) =

√
(xi − xj)2 + (yi − yj)2, ∀i, j ∈ V , denote the

distance between any pair of sensor nodes or a sensor node
and the depot. Each sensor is powered by an unreplenishable
battery, and the robot has a rechargeable battery with an initial
full power of E joules.

Mobility Energy Model of the Robot. For the energy mode
of the robot, as our goal is to find an energy-efficient route for
the robot to collect data under battery power constraints, we
focus on the energy consumption of a robot due to its mobility.
Mobility energy of a robot includes all the energy needed to
keep the robot in motion, such as the drive motor, steering
motor, and related energy losses. Therefore, the mobility
energy consumption of a robot is directly related to its traveled
distance. Xiao et al. [30] show that the ideally achievable

(a) BC-TSP. (b) CSP.

Fig. 1. BC-TSP and CSP-based battery-constrained data collection.

distance d (in meters) of a battery-powered wheeled mobile
robot on one single charge is

d =
E

w × Ccrr
(1)

, where E (in joules) is the battery power of the robot, w
(in Kg) is the weight of the robot, and Ccrr represents the
coefficient of rolling friction depending on the terrain type.
We denote µ = w × Ccrr as the mobility energy coefficient
(with a unit of joule/meter), indicating the amount of battery
power consumed per unit traveled distance by the robot.

Data Collection Model. When the robot wirelessly collects
the data packets from the sensor nodes, their energy con-
sumption follows the first-order radio model [13]. We assume
the robot and sensor nodes all have a transmission range of
Tr meters; that is, the robot can collect data packets from a
sensor node directly if their distance is within Tr. Assume the
robot is currently located at node j ∈ V , when sensor node
i sends a k-bit data packet to the robot over their distance
li,j ≤ Tr, the transmission energy spent by sensor node i is
Et

i (j) = ϵelec ∗ k + ϵamp ∗ k ∗ l2i,j , the receiving energy spent
by the robot is Ere

j = ϵelec ∗ k. Here ϵelec = 100nJ/bit is
the energy consumption per bit on the transmitter and receiver
circuit, and ϵamp = 100pJ/bit/m2 is the energy consumption
per bit on the transmit amplifier. This energy model also
applies to two sensors sending packets between them. We leave
the more general case that the robot can adjust its transmission
range for more energy-efficient data collection as future work.

In addition, as the battery power of the robots can be
recharged while that of the sensor nodes cannot, we need
to conserve the energy consumption of the sensor nodes as
much as possible; otherwise, energy-depleted sensor nodes
will render the RNS inoperable. We thus assume that when
collecting data from sensor node i, the robot should arrive
at a i’s location to collect its data, as shown in Fig. 1(a).
That is, the robot moves from its current location to i’s
location (xi, yi) following the straight line between them. It
then directly collects the data packets from i. This way, the
sensor node’s transmission energy of sending one data packet
to the robot is reduced to a minimal ϵelec ∗ k.



TABLE I
NOTATION SUMMARY

Notation Description
Vs The set of |Vs| sensor nodes
r The depot where the robot is located and recharged
V V = Vs ∪ {r}
Tr Transmission range of sensor nodes and the robot
E The initial battery power of the robot
d(i, j) Distance between two nodes (sensor nodes or robot) i and j
µ Mobility energy coefficient of the robot
R The data collecting route of the robot
ER The battery power consumption of the robot on route R
DR Total number of packets collected by the robot on route R
Et

u(v) Transmission energy spent by u to transmit one packet to v
Ere

v Receiving energy spent by v to receive one packet
xi,j Decision variable if edge (i, j) on route R in ILP
ui Position variable for node i on route R in ILP

Problem Formulation of BC-DCR. Let R =
{r, v1, v2, ..., vx, r} denote a data-collecting cycle of the robot,
where the robot starts from depot r, visits a sequence of sensor
nodes vi ∈ Vs to collect their data packets, and finally returns
to depot r. Denote the battery power spent by the robot along
R as ER; ER = µ×

(
d(r, v1)+

∑x−1
i=1 d(vi, vi+1)+d(vx, r)

)
.

Denote the total number of data packets the robot collects
along R as DR; DR =

∑x
i=1 dvi . Given the initial battery

power E of the robot, the goal of the BC-DCR is to find a
data-collecting cycle R for the robot to traverse to maximize
DR before running out of its battery power and return to
r; that is, ER ≤ E . Next, we introduce budget-constrained
traveling salesman problem (BC-TSP) [27] and show that
BC-DCR is the equivalent of BC-TSP.

BC-TSP. Given a weighted complete graph G(V,E), edge
(u, v) ∈ E has a weight w(u, v) ≥ 0, and each node i ∈ V
has a prize pi ≥ 0 to be collected. Let r ∈ V be the node
where the salesman starts and ends its route, and B his budget,
the distance he can travel before returning to r. The goal of
the BC-TSP is to find a prize-collecting cycle R = {r =
v1, v2, v3, ..., vx = r} such that its total prize PR =

∑
i∈R pi

is maximized while its cost CR =
∑x−1

i=1 w(vi, vi+1) ≤ B.
BC-TSP is NP-hard [27].

Theorem 1: BC-DCR is equivalent to BC-TSP.
Proof: In BC-DCR, the RSN can be represented as a complete
graph G(V,E) where V = Vs∪{r} includes the set of sensor
nodes Vs and the depot r, and for any edge (i, j), its weight
w(i, j) = µ × d(i, j) = µ ×

√
(xi − xj)2 + (yi − yj)2. Let

the number of data packets di at node i ∈ Vs in BC-DCR
be the prize pi available at node i in the BC-TSP, and let
the initial battery power E of the robot in the BC-DCR be
the initial budget B of the traveling salesman in the BC-TSP.
Then, finding a data-collecting cycle for the robot to collect
a maximum number of data packets while staying within its
battery power of E in BC-DCR is the same as finding a prize-
collecting cycle for the salesman to collect maximum prizes
while staying within his budget of B in BC-TSP. Thus, BC-
DCR is equivalent to BC-TSP.

Rationale of Modeling BC-DCR as BC-TSP. As the robot can

be recharged while the sensor nodes can not (we leave the
case of rechargeable sensor nodes as future work), a critical
goal of the BC-DCR is to save sensor nodes’ energy during
data collection to prolong the network’s lifetime. Following
the above first-order radio model, the distance between the
robot and sensor nodes should be zero to minimize a sensor
node’s transmission energy. That is, the robot should arrive
at a sensor node’s location to collect its data, as shown in
Fig. 1(a). This way, the sensor node’s transmission energy of
sending one data packet to the robot is reduced to a minimal
ϵelec ∗ k.

State-of-the-Art. Existing research of of data collections in the
RSN [21], [26], [29] mainly take a covering salesman problem
(CSP) approach, as shown in Fig. 1(b). The goal of the CSP
is to select a set of polling points [21] or rendezvous points
[26], [29], which are visited by the robot to collect the data
packets and minimize the length of the data-gathering tour
of such nodes. The sensor nodes transmit their data packets
to the nearest polling point directly [21] or to the nearest
rendezvous point via multi-hop manner [26], [29]. As Ma
et al. [21] is the most representative work in this approach,
we compare our work with theirs. They proposed a so-called
spanning tree covering algorithm, which has three steps. First,
it uses a minimum spanning tree-based greedy algorithm to
find the polling nodes to be included in the data-gathering
route. Second, it uses an ILP to compute the optimal TSP
route among the polling nodes and depot. Finally, it uses the
well-known 2-approximation algorithm for the TSP [6] to find
the final route for the robot.

Although CSP can collect more data packets than BC-TSP
does under the limited battery power of the robot, there are
several disadvantages of the CSP approach. First, it is time-
consuming to compute the polling points and their route, as it
is ILP-based. Second, in the CSP model, sensor nodes must
spend battery power transmitting data packets to the polling
nodes, a significant energy drain to the RSN. Our simulations
show that the BC-TSP-based approach achieves 32.02% more
network lifetime than the CSP-based approach. Finally, like
most existing work, CSP assumes the robot has enough battery
to visit the entire RSN to collect data packets. This assumption
is no longer valid, considering robots have limited battery
power, and consequently, they cannot visit the entire sensor
field in many large-scale applications.

III. ALGORITHMIC SOLUTIONS FOR BC-DCR

We first design an Integer Linear Program (ILP)-based
solution to solve BC-DCR optimally. We then design a more
time-efficient greedy algorithm to solve BC-DCR.

ILP Solution. We formulate below integer program ILP(A).
Decision variable xi,j indicates if edge (i, j) is on the data-
collecting route (i.e., node j is visited immediately after node
i is visited); xi,j = 1 if so and 0 otherwise. We introduce
|Vs| order variables ui, i ∈ Vs, to indicate the order in which
the nodes are visited. ur = 1 as r is the starting node and
ui < uj indicates that node i is visited before node j (but not



necessarily immediately). ui − 1 equals the number of edges
the robot has traversed after it has visited sensor node i. Note
that V = Vs ∪ {r}.

(A) max
∑
i∈V

∑
j∈V

di · xi,j (2)

s.t.
xi,j ∈ {0, 1}, ∀i, j ∈ V (3)∑
j∈Vs

xr,j =
∑
i∈Vs

xi,r = 1 (4)∑
i∈V

xi,k =
∑
j∈V

xk,j ≤ 1, ∀k ∈ V (5)∑
i∈V

∑
j∈V

wi,j × xi,j ≤ E , (6)

2 ≤ ui ≤ |V |, ∀i ∈ Vs (7)
ui − uj + 1 ≤ |Vs| × (1− xi,j), ∀i, j ∈ Vs (8)

Objective function 2 is to maximize the total number of
collected data packets. Constraint 3 is the integer constraint
of xi,j . Constraint 4 guarantees that the data-collecting route
starts and ends at node r. Constraint 5 ensures the con-
nectivity of the path and that each node is visited at most
once. Constraint 6 guarantees that the total battery power
spent by the robot on the data collecting path does not
exceed its initial battery power of E . Constraints 7 and 8 are
Miller–Tucker–Zemlin (MTZ) Subtour Elimination Constraints
[3], which guarantees that there is one global tour visiting
all the selected vertices (otherwise, there could be multiple
subtours each visiting only a subset of the selected vertices).

As ILP(A) is time-consuming to compute, we present a
more time-efficient greedy algorithm to solve the BC-DCR
next. We first give the below definition.

Definition 1: (Battery-Feasible Sensor Nodes.) Given the
current sensor node s where the robot is located and the robot’s
current remaining battery power B, the battery-feasible sensor
nodes, denoted as F(s,B), is a set of sensor nodes that the
robot can visit to collect their data packets and then return
to depot r without running out of its battery power. That is,
F(s,B) = {u|u ∈ U ∧ µ×

(
d(s, u) + d(u, r)

)
≤ B}, where

U is the set of sensor nodes that have not been visited. □

Greedy Algorithm. Given two nodes u, v ∈ V , and the robot
is at node u, we define the prize cost ratio of visiting v,
denoted as pcr(u, v), as the ratio between the data packets
available at v and the distance d(u, v) between u and v. That
is, pcr(u, v) = dv

d(u,v) . Algo. 1 works in rounds. In each round,
located at the node s and with an available budget B, the robot
checks if there are still unvisited battery-feasible nodes (line
2). If so, it visits the one with the largest prize cost ratio and
updates all the data-collecting information accordingly (lines
3-7). The robot stops when all nodes have been visited, or
none of the unvisited nodes are battery-feasible. At this point,
the robot finishes the data-collecting process and returns to
the depot r. It updates and returns the route with its total cost,

(a) Collected Packets. (b) Total Distance Traveled.

Fig. 2. Comparing ILP, PCR, and SpanningTree.

total prizes collected, and the remaining battery power of the
robot (lines 9 and 10). Its time complexity is O(|V |2).

Algorithm 1 Greedy Algorithm for BC-DCR.
Input: A RSN graph G(V,E), depot r, and initial battery E ;
Output: A data-collecting route R, its cost CR and prize DR.
Notations: R: the current route found, starts from r;

CR: the distance of R, initially zero;
DR: the packets collected on R, initially zero;
U : the set of unvisited nodes, initially U = Vs;
s: the node where the robot is located currently;
B: current remaining battery of the robot, initially E ;

1: s = r, R = {r}, CR = DR = 0, B = E ;
// if not all battery-feasible nodes are visited

2: while (U ̸= ϕ ∧ F(s,B) ̸= ϕ) do
3: Let u = argmaxv∈F (s,B)∩Upcr(s, v);
4: R = R ∪ {u};
5: CR = CR + d(s, u), DR = DR + du;
6: B = B − d(s, u)× µ, U = U − {u};
7: s = u;
8: end while
9: R = R ∪ {r}, CR = CR + d(s, r), B = B − d(s, r)× µ;

10: return R, CR, DR, B.

IV. PERFORMANCE EVALUATION

Experiment Setup. We write our own simulator in Java on
Windows 11 with AMD Processor (AMD Ryzen 5 4000 Series
6-Core) and 24GB of DDR4 Memory. We refer to the ILP-
based optimal solution as ILP, the prize cost ratio-based
greedy algorithm (i.e., Algo. 1) as PCR, and the spanning-
tree-based covering algorithm [21] as SpanningTree. We use
CPLEX [2] for ILP computation in both ILP and Span-
ningTree. A depot is located at (0,0), where a robot is
dispatched to the BSN to collect the data packets and returns
before running out of battery power. Each sensor node has
generated a random number of data packets in [0, 100], and
each packet is 400B. In all plots, each data point is an average
of ten runs, for each of which a different RSN instance is
created. We compare all the algorithms using the same RSN
instance for each run for a fair comparison. The error bars
indicate 95% confidence intervals. For the mobility energy
coefficient µ = w×Ccrr, as [30] shows that the weight w of a



(a) ILP. (b) PCR. (c) SpanningTree.

Fig. 3. Visually comparison in an RSN of 1000m by 1000m with 20 nodes. E = 50Wh with maximum distance of 1800m.

(a) ILP. (b) PCR. (c) SpanningTree.

Fig. 4. Visually comparison in an RSN of 1000m by 1000m with 20 nodes. E = 70Wh with maximum distance of 2520m.

typical robot is around 600 Kg while terrain type Ccrr = 0.17,
we set µ as 100 J/m. Thus, a 1Wh (i.e., 3600J) amount of
battery can power a robot to travel 36 meters.

Compare ILP, PCR, and SpanningTree. We generate RSNs
of 1000m by 1000m with 20 nodes randomly placed and vary
the initial battery of the robot from 50Wh to 110Wh. We set
Tr as 100m and assume no two sensor nodes can communicate
with each other directly. Therefore, under SpanningTree, the
robot must reach each sensor node to collect its packets.
Fig. 2(a) shows the number of packets the robot collects before
it runs out of its battery and safely returns to the depot.
We observe that with the increase in battery power for each
algorithm, the packet collected and distance traveled by the
robot increase accordingly. ILP collects the maximum number
of data packets at each battery level, demonstrating its opti-
mality. PCR outperforms the existing work of SpanningTree
by collecting 29.1% more data packets than SpanningTree.
Fig. 2(b) shows the distance traveled by the robot for all
the algorithms. As the battery power of the robot limits the
traveled distance, they all give similar distances except for the
SpanningTree, which is caused by its oblivion of data packets.

Fig. 3 and 4 visualize different algorithms with an initial
battery power of 50Wh and 70Wh, respectively. It shows that
in both cases, PCR can compute a data-collecting route similar
to that of ILPs. This shows that PCR is a competitive data-
collecting algorithm as it strikes a balance between packets
collected and battery consumption. For SpanningTree, as it
follows Prim’s algorithm to grow a minimum spanning tree
(MST) connecting all the polling nodes, it only focuses on

the distance (i.e., battery cost) of the robot without paying
attention to the number of packets available at the sensor
nodes; thus it does not fare well compared to other data-
collecting algorithms. Table II shows the execution time of
different algorithms with different E . We observe that for the
SpanningTree, the execution time decreases with more battery
power. This is due to how the MST is formed and the 2-
approximation algorithm it uses, wherein the edges in MST
do not grow exponentially when the battery power increases.

TABLE II
EXECUTION TIME (MS) OF DIFFERENT ALGORITHMS W.R.T.

ROBOT BATTERY POWER.

Battery power E (Wh) PCR SpanningTree ILP
50 4 38 54
70 5 34 55
90 6 27 57
110 8 26 58

Comparing BC-TSP- and CSP-based Data Collection Ap-
proaches. Finally, we compare our BC-TSP approach with the
existing CSP approach [21] to study their pros and cons. We
consider dense networks of 2000m by 2000m with 100 nodes
and set the Tr as 200m. CSP works well when the network is
dense enough that the robot has a few sensor nodes within its
transmission range to collect data packets. The initial battery
power of each sensor node is 6480 Joules, which is the amount
of energy stored in a typical AAA battery [1]. We focus on
a continuous data sensing and collection scenario that takes
place in rounds. In each round of one hour, sensors generate



(a) Network Lifetime. (b) Collected Packets.

Fig. 5. Comparing BC-TSP and CSP.

random numbers of packets in a pre-specified range, and then
the robot is dispatched to collect the data packets. We aim
to find the network lifetime achieved and packets collected by
both approaches. Here, the network lifetime is defined as when
the first sensor node in the RSN depletes its battery power.

Halgamuge et al. [20] studied different factors affecting
the sensing energy and proposed a sensing energy model for
generating b-bit packet as Es(b) = bVsup · Isens ·Tsens, where
Vsup and Isens are the supply voltage and current required for
sensing activity and Tsens is the time duration for sensing one
bit of information. As their typical values are 2.7 V, 25 mA,
and 0.5 ms, respectively (Table 3, [20]), the sensing energy of
generating a packet of 400B is calculated as 0.108 Joules.

Fig. 5(a) shows that the BC-TSP-based data collection
yields up to 32.02% longer lifetime than CSP-based under
different ranges of packets generated by each sensor in each
round. This is because, in CSP, sensor nodes spend battery
power not only in sensing but also in transmitting data
packets to the robot, while in our BC-TSP model, sensor
nodes only spend energy in sensing. Fig. 5(b) shows that
the CSP approach collects more data packets than BC-TSP in
each round, although the difference diminishes with increased
battery power of the robot. The robot in BC-TSP can only
collect data packets from the node it visits, while in CSP, it
collects the data packets from all the sensor nodes within Tr.
This demonstrates a tradeoff between data packets collected
and network lifetime achieved in an RSN with the battery-
constrained robot.

V. RELATED WORK

In this section, we review the existing data-collecting tech-
niques in RSN that inspire our research and the existing work
in the theory community that solves the BC-TSP.

Data Collection in the RSN. Luo et al. [19] was one of the
first to introduce robot mobility into wireless sensor networks.
They proposed a data-gathering scheme to minimize the
maximum average load of a sensor by jointly considering the
problems of movement planning of robots and data-gathering
routing. They assumed the sensor field was a circle and mainly
used geometric calculations as the technique.

Ma et al. [21] instead took a graph-theoretical approach
and modeled data-gathering in sensor networks as a covering
salesman problem (CSP) [7]. The goal of the CSP is to
minimize the length of the data-gathering tour of polling points

visited by the robot, where the polling points cover all the
sensor nodes in the network. That is, sensor nodes within the
transmission range of a polling point will directly transmit
their data packets to the polling point, which the robot will
then collect. Guo et al. [11], [28] introduced wireless energy
charging into mobile data collection and formulated and solved
a network utility maximization problem considering energy
balance and the bounded sojourn time of the mobile robot.

However, the above works did not address delay-sensitive
applications, wherein all sensed data must be collected within
a given time constraint. To address this problem, Salarian et al.
[26] introduced rendezvous points (RPs), wherein a robot only
visits RPs while sensor nodes that are not RPs forward their
sensed data via multi-hop to the nearest RP. They designed a
weighted rendezvous planning heuristic algorithm that enables
a mobile sink to retrieve all sensed data within a given deadline
while conserving the energy expenditure of sensor nodes. This
approach is further improved by Wang et al. [29], which
considered sensor nodes to have limited buffer sizes while
producing data with different speeds and designed an efficient
path-planning algorithm for reliable data-gathering.

All the above works assume the mobile robots have enough
battery power to collect all the sensory data in the RSN. In
a large-scale sensor field, it is possible that the robot does
not have enough battery power to visit all the sensor nodes.
In this case, a critical question is scheduling the robot to
collect as many data packets as possible before recharging
at the charging station. We formulate it as a graph-theoretical
problem and show that it gives rise to a new variation of the
well-known traveling salesman problem, which we refer to as
a budget-constrained traveling salesman problem. Our work
is the first to focus on data collection in the RSN, explicitly
considering the battery constraint of the robot. Our other
observation of the above covering salesman-based approach
is that it still uses one or multi-hop wireless communication
for data collection, which could quickly deplete sensor nodes’
battery power in data-intensive sensing applications, rendering
the entire RSN inoperable. In contrast, in our budget-constraint
traveling salesman problem, the robot (i.e., the traveling
salesman) must visit each sensor node directly to collect its
data packet, dramatically alleviating the sensor node’s energy
depletion. Using realistic measurements of robot battery power
and mobility characteristics, we show that our approach can
increase the network lifetime by 32.02% compared to the
existing approach [21].

Chen et al. [5] proposed to find an optimal data harvesting
path to collect as much data as possible within a time duration
and devised a constant-factor approximation algorithm. The
time constraint they considered is equivalent to the robot
battery power constraint in this paper. However, their data
collection model is based on the CSP approach, which could
deplete sensor nodes’ energy and result in a short network
lifetime. They assumed that each sensor node has one unit
of data message, and the goal is to cover as many sensors
as possible. In our model, however, different sensors have
different numbers of data packets, and the goal is to collect



as many data packets as possible with the battery constraint.

BC-TSP Research in Theory Community. BC-TSP has
been studied in theory and operations research community
[27], [23], [4]. Sokkappa et al. [27] was one of the first to
study this problem and prove it is NP-hard. They found it
important to consider a node’s neighborhood when including
it in the route. This is because a low-value node that brings
the route closer to many other nodes may be more desirable
than an isolated node of high value. This inspires our greedy
algorithm that finds the node with the maximum prize cost
ratio. Levin et al. [4] studied a related budget prize collecting
tree problem, which finds a subtree with maximum prizes
while the cost of the tree stays in a budget. They proposed
a (4+ ϵ)-approximation algorithm. Paul et al. [23] considered
constrained versions of the prize-collecting traveling salesman
and the minimum spanning tree problems, wherein the goal is
to maximize the number of vertices in the returned tour/tree
subject to a bound on the tour/tree cost. They proposed a
2-approximation algorithm based on a primal-dual approach.
Ruiz et al. [25] studied quota-driven TSP problem. The goal of
the traveling salesman is to find a route from s to t of minimum
distance such that the sum of the prizes on the route reaches a
preset quota. This paper shows a real network application of
the BC-TSP, which is the battery-constrained data collection
in RSN. Considering that many network-related parameters
(e.g., spatial correlation of data generation in the RSN) can
be incorporated into the BC-DCR, many new variations of
BC-TSP could exist to be further studied.

VI. CONCLUSION AND FUTURE WORK

We focus on the robot’s limited battery power and identify,
formulate, and solve BC-DCR, a new algorithmic problem for
data collection in RSNs. Limited battery power poses a severe
challenge for data collection in large-scale RSNs. If not dealt
with satisfactorily, it could negatively affect the data-collecting
performance in the RSN and compromise its function. We
design a suite of optimal and heuristic algorithms to solve
the BC-DCR. BC-DCR is equivalent to a graph-theoretical
problem called the budget-constrained traveling salesman
problem. Via extensive simulations using real measurements
of robot battery power and mobility models, we show that
our algorithms outperform the existing work by collecting
more data packets and achieving a more extended network
lifetime of the RSN. In this paper, we focus on the robot’s
mobility energy during the data-collecting process and haven’t
considered its receiving energy consumption. Integrating this
energy consumption with existing mobility energy to achieve
a holistic energy-efficient data-collecting framework for the
RSN is a challenging new problem.
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