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Abstract

In this paper, we propose a multi-agent reinforcement
learning framework for the Prize-Collecting Traveling
Salesman Problem (PC-TSP). Our observation is that
prize-collecting in PC-TSP is intrinsically related to cumu-
lative reward maximization in reinforcement learning. By
integrating the prizes in PC-TSP into the reward model in
reinforcement learning, we design an efficient and effective
MARL algorithm to solve the PC-TSP. Via extensive simu-
lations under different network and reinforcement learning
parameters, we show that our learning algorithm delivers
an average of 65.6% of less traveling distance compared
to one existing handcrafted greedy algorithm.

1. Introduction

Traveling salesman problem (TSP) is one of the most
famous combinatorial optimization problems in Computer
Science [1]. In this paper, we study a new variation of
TSP called prize-collecting TSP (PC-TSP). In contrast to
the traditional TSP wherein all the nodes must be visited,
in PC-TSP, each node has some amount of prize to be col-
lected; the goal of the traveling salesman is to find a sub-
set of the nodes to visit to collect some targeted amount
of prizes. The targeted prize is called the quota for the
salesman. PC-TSP is motivated by some latest business in-
novations and technological development in recent years.
Below we give some motivating examples for PC-TSP.

Motivating Examples. Consider a Uber driver in au-
tonomous driving, who starts from his home and drives to
different locations to pick up and drop off customers and
returns to his home. Given a sequence of customer ride
requests (at different locations) offering different amounts
of payments, one possible goal of the driver could be
how to achieve a targeted amount of ride payment (i.e.,
quota) while minimizing his traveling distance to save time
and gas. For example, a typical Uber driver could set a
daily goal, say $1000, and stop working once that goal is
achieved. Similarly, in an automated warehouse scenario,

the time window delivery option of the merchandise (e.g.,
same-day priority delivery with high fees vs. 7-day free
delivery) plays a central role in multi-robots scheduling of
how to ship out merchandise within their time windows
cost-effectively [2, 3].

Our Contribution. In this paper, we design a multi-agent
cooperative reinforcement learning (MARL)-based algo-
rithm to solve the PC-TSP. Although PC-TSP has been
studied extensively [4–6], none of the existing research uti-
lizes RL techniques to solve the PC-TSP to the extent of
our knowledge. We observe that two characteristics of the
PC-TSP make RL a particularly good candidate to solve
the problem. First, in the PC-TSP, to find the shortest
route while collecting enough prizes, the traveling sales-
man must constantly make decisions along the way. Such
sequential decision-making resembles the Markov deci-
sion process adopted in RL, wherein the outcomes are
partly random and partly under the control of a decision-
maker. Second, the goal of the traveling salesman in PC-
TSP is to collect enough prizes while visiting different
cities using the least cost route. This resembles the goal
of RL to learn an optimal policy that maximizes accumu-
lative discounted rewards received at different states.

Despite the above similarities, it remains unclear as to
what extent the prize-collecting in PC-TSP corresponds to
cumulative reward maximization in RL and how to inte-
grate the prizes in PC-TSP into the RL reward model re-
mains largely unexplored. We address this question and
design a multi-agent cooperative RL framework that inte-
grates the prizes available at nodes into the reward model
of the RL. Via extensive simulations under different net-
work and RL parameters, we show that our learning algo-
rithm is solution-effective and time-efficient. In particular,
it delivers an average of 65.6% of less traveling distance
compared to one handcrafted greedy algorithm.

Paper Organization. The rest of the paper is organized as
follows. Section 2 reviews the related work that solves PC-
TSP. Section 3 formulates the PC-TSP and proposes an op-
timal algorithm and a greedy heuristic algorithm. In Sec-
tion 4 we propose our MARL algorithm. Section 5 com-
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Figure 1. Illustrating the PC-TSP.

pares all the algorithms and discusses the results. Section 6
concludes with a discussion of future works.

2. Related Work

Our work was inspired by ant-Q [7], an algorithmic
framework combining the Q-learning algorithm [8] and ant
colony intelligent behavior representing the collective col-
laboration of a large number of autonomous agents. They
showed that ant-Q is an effective RL technique for solving
combinatorial optimization problems, including TSP. Re-
cently, Ottoni et al. [9] applied two RL techniques (i.e., Q-
learning and SARSA) to solve TSP with refueling where
uniform and non-uniform fuel prices are available at dif-
ferent locations. However, they did not consider the prize-
collecting TSP, which is the topic of this paper. By inte-
grating prize-collecting in TSP with the reward model in
ant-Q, we are able to create a more powerful and efficient
MARL algorithm that solves PC-TSP.

The closest work to ours is Gao et al. [10], which ap-
plied the ant-Q technique to solve a different and funda-
mental graph-theoretical problem called the k-stroll prob-
lem [11–13]. Given a weighted graph G(V,E) and two
nodes s, t ∈ V , and an integer k, k-stroll problem is to
find the shortest path from s to t that visits at least k other
nodes in the graph. In k-stroll, different nodes have the
same prizes. PC-TSP generalizes it by considering that
different nodes have different prizes available; thus, it is
more challenging to solve.

3. Prize-Collecting Traveling Salesman
Problem (PC-TSP)

Problem Formulation. Given a complete and weighted
graph G(V,E), where V is a set of nodes and E is a set of
edges. Each edge (u, v) ∈ E has a weight w(u, v), indi-
cating the travel distance or cost on this edge. Each node
i ∈ V has a weight pi ≥ 0 ∈ R+, indicating the prize
available at this node. Given any route R = {v1, v2, ...vn}
in the graph, where (vi, vi+1) ∈ E, denote its cost as
CR =

∑n−1
i=1 w(vi, vi+1) and its total prizes as PR =∑

i∈R pi. Note that if all the nodes on the path are distinct,
this route is a path; otherwise, it is a walk. Let s, t ∈ V
be the two nodes where a traveling salesman starts and fin-

ishes his travel, and let Q denote his targeted quota to col-
lect during his trip. The goal of the PC-TSP is to find a
route Rs = {s = v1, v2, v3, ..., vn = t} such that its total
prize PRs ≥ Q while its cost CRs is minimized. Note that
the traditional prize-collecting TSP problem with s = t is
a special case of the PC-TSP studied in this paper.

EXAMPLE 1: Fig. 1 is an illustrative example for PC-
TSP for quota Q = 4. The numbers on the edges are their
weights, and the numbers in the parentheses are the prizes
available at different nodes. The optimal walk from s to
t is: s, D, t, C, and t, with a total cost of 6 and a total
collected prize of 4. Other routes from s to t are not opti-
mal; e.g., the path s, A, B, C, and t has a cost of 7 and a
collected total prize of 5.

Greedy Algorithm. Given an edge (u, v) ∈ E, and the
traveling salesman is node u, we define the prize cost ratio
of going to v as the ratio between the prize available at v
and the edge weight w(u, v), and denote it as pcr(u, v).
That is pcr(u, v) = pv

w(u,v) . Algo. 1 is a greedy algorithm
that takes place in rounds. In each round, it visits an unvis-
ited node with the maximum prize cost ratio among all the
unvisited nodes. It continues until the total amount of col-
lected prizes reaches Q. Its time complexity is O(|V |2).
Note that Algo. 1 also works for PC-TSP problem where
s = t. In Fig. 1, Algo. 1 gives the solution of s, E, and t,
with a total cost of 7 and a total prize of 4.

Algorithm 1: Greedy Algorithm for PC-TSP.
Input: A complete weighted graph G(V,E), s, t, and Q.
Output: A route R from s to t, its cost CR and prize PR.
Notations: R: the current route found, initially empty;
CR: the length of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially U = V − {s, t};
r: the node where the salesman is located currently;
u: the node where salesman moves to next;
1. r = s, R = φ, CR = PR = 0, U = V − {s, t};
2. while (PR < Q)
3. Let u = maxz∈Upcr(r, z) = maxz∈U pz

w(r,z) ;
4. R = R ∪ {u}, U = U − {u};
5. CR = CR + w(r, u), PR = PR + pu;
6. r = u;
7. end while;
8. RETURN R, CR, and PR.

4. Multi-agent Reinforcement Learning
(MARL) for PC-TSP

Reinforcement Learning (RL) [8]. We describe an
agent’s decision-making in an RL system as a Markov de-
cision process (MDP), which is a 4-tuple (S,A, t, r):
• S is a finite set of states,
• A is a finite set of actions,



• t : S ×A→ S is a state transition function, and
• r : S × A → R is a reward function, where R is a real
value reward.

In MDP, an agent learns an optimal policy that maxi-
mizes its accumulated reward. At a specific state s ∈ S,
the agent takes action a ∈ A to transition to state t(s, a) ∈
S while receiving a reward r(s, a) ∈ R. The agent main-
tains a policy π(s) : S → A that maps its current state
s ∈ S into the desirable action a ∈ A. In the context
of the PC-TSP, the states are all the nodes V , and the ac-
tions available for an agent at a node are all the edges em-
anating from this node. We consider a deterministic policy
wherein, given the state, the policy outputs a specific ac-
tion for the agent. A deterministic policy suits the PC-TSP
well, as in PC-TSP, when an agent at a node takes action
(i.e., follows one of its edges), it will surely end up with
the node on the other end of the edge.

A widely used class of RL algorithms is value-
based [8, 14], which finds the optimal policy based
on the value function at each state s, V πs =
E{

∑∞
t=0 γ

tr(st, π(st))|s0 = s}. The value at each state
is the expected value of a discounted future reward sum
with the policy π at state s. Here, γ (1 ≤ γ ≤ 1) is a
discounted rate that determines the importance of future
rewards; the larger of the γ, the more important the future
rewards. Recall that r(s, π(s)) is the reward received by
the agent at state s following policy π.

Q-Learning. Q-learning is a value-based algorithm [8]. It
learns how to optimize the quality of the actions in terms
of the Q-value Q(s, a). Q(s, a) is defined as the expected
discounted sum of future rewards obtained by taking action
a from state s following an optimal policy. The optimal
action at any state is the action that gives the maximum Q-
value. For an agent at state s, when it takes action a and
transitions to the next state t, Q(s, a) is updated as

Q(s, a)← (1−α)·Q(s, a)+α·[r(s, a)+γ ·maxbQ(t, b)],
(1)

where 1 ≤ α ≤ 1 is the learning rate that decides to what
extent newly acquired information overrides old informa-
tion in the learning process. In Eqn. 1, maxbQ(t, b) is the
maximum reward can be obtained from the next state t.

Multi-agent Reinforcement Learning (MARL) Algo-
rithm. In our MARL framework for PC-TSP, there are
multiple agents that all start from the node s. They work
synchronously and cooperatively to learn the state-action
Q-table and the reward table and take action accordingly
in any of the states. The common goal of all the agents is
to learn and find a route starting from s, each visiting some
nodes to collect enough prizes that equal to or a bit larger
than Q, and ending at t.

Node Selection in PC-TSP. For an agent located at any
node s, the node selection rule specifies the next node t

it moves to during its prize-collecting learning process. It
combines the exploration, wherein an agent improves its
knowledge about each action by exploring new actions,
and exploitation, where an agent exploits its current esti-
mated value and chooses the greedy approach to get the
most reward. In exploitation, the agent always chooses the
node t = argmaxu∈U{ [Q(s,u)]δ×pu

[w(s,u)]β
} to move to. Here, U

is the set of nodes not visited yet by the agent, and δ and
β are preset parameters. That is, an agent, located at node
s, always moves to a node t that maximizes the learned
Q-value Q(s, t) weighted by the length w(s, t) of the edge
(s, t) and the prize pt available at node t. In exploration,
the agent chooses a node t ∈ U to move to by the follow-
ing distribution: p(s, t) = ([Q(s,t)]δ×pu)/[w(s,t)]β∑

u∈U ([Q(s,u)]δ×pu)/[w(s,u)]β
.

When q ≤ q0, where q is a random value in [0, 1] and q0
(0 ≤ q0 ≤ 1) is a preset value, exploitation is selected;
otherwise, exploration is selected. The distribution p(s, t)
characterizes how good the nodes are at learned Q-values,
the edge lengths, and the node prizes. The higher the Q-
value, the shorter the edge length, and the larger the node
prize, the more desirable the node is to move to.

MARL Algorithm. Next, we present our MARL algorithm
viz. Algo. 2. It consists of a learning stage (lines 1-29)
and an execution stage (lines 30-36). There are m agents
in the learning stage, which takes place in a preset number
of episodes. Each episode consists of the below two steps.

In the first step (lines 3-23), all them agents are initially
located at the starting node s with zero collected prizes.
Then each independently follows the node selection rule to
move to the next node to collect prizes and collaboratively
updates the Q-value of the involved edge. This contin-
ues in parallel among all the agents until they each collect
enough prizes Q. In this process, some agents may finish
collecting prizes earlier than others; in this case, they must
wait for others to collect their prizes (lines 5-17). Here we
assume the prizes at each node can be collected multiple
times. Once all the agents collect enough prizes, they ar-
rive at the destination t and update the Q-table one more
time (lines 18-23).

In the second step (lines 24-28), it finds among the m
routes the one with the shortest distance and updates the
reward value of the edges that belong to this shortest route
and the Q-values.

Finally, in the execution stage (lines 30-36), the travel-
ing salesman starts from s and ends at t while traveling to
the next node that maximizes the Q-value at that node. It
collects the prizes at each visited node. Note we set the
initial Q-value and reward value for edge (u, v) as pu+pv

w(u,v)

and −w(u,v)
pv

, respectively, to reflect the fact that the more
prizes available and less length on edge, the more valuable
of the edge for the salesman to travel.

Algorithm 2: MARL Algorithm for PC-TSP.



Input: A graph G(V,E), s, t, and a quota Q.
Output: A route R from s to t, CR, and PR.
Notations: i: index for nodes; j: index for agents;
Uj : set of nodes j not yet visits, initially Uj = V − {s, t};
Rj : the route taken by agent j, initially empty;
lj : the cost (i.e., the sum of edge weights) of Rj , initially 0;
Pj : the prizes collected on Rj , initially zero;
rj : the node where agent j is located currently;
sj : the node where agent j moves to next;
R: the final route found the MARL, initially empty;
Q(u, v): Q-value of edge (u, v), initially pu+pv

w(u,v) ;

r(u, v): Reward of edge (u, v), initially −w(u,v)
pv

;
α: learning rate, α = 0.1;
γ: discount factor, γ = 0.3;
δ, β: parameters in node selection rule; δ = 1 and β = 2;
W : a constant value of 10;
epi: number of episodes in the MARL;
1. for (1 ≤ k ≤ epi) // Learning stage
2. All the m agents are at node s, i.e., rj = s, 1 ≤ j ≤ m;
3. for (j = 1; j ≤ m; j++) // Agent j
4. Pj = 0; // Initial prize collected by agent j is zero

end for;
// At least one agent has not collected enough prizes

5. while (min{Pj |1 ≤ j ≤ m} < Q)
6. for (j = 1; j ≤ m; j++) // Agent j
7. if (Pj < Q) // Has not collected enough prize
8. Finds the next node sj following action rule;
9. Rj = Rj ∪ {sj};
10. lj = lj + w(rj , sj);
11. Pj = Pj + psj ; // Collect prize
12. Q(rj , sj) = (1− α) ·Q(rj , sj)+

α · γ ·maxz∈UjQ(sj , z); // Update Q-value
13. rj = sj ; // Move to node sj ;
14. Uj = Uj − {sj};
15. end if;
16. end for;
17. end while;
18. for (j = 1; j ≤ m; j++) // Agent j ends at node t
19. Rj = Rj ∪ {t};
20. lj = lj + w(rj , t);
21. Q(rj , sj) = (1− α) ·Q(rj , sj)+

α · γ ·maxz∈UjQ(sj , z); // Update Q-value
22. rj = t;
23. end for;
24. j∗ = argmin1≤j≤m

lj
Rj

// Route of smallest cost
25. for (each edge (u, v) ∈ Rj∗)
26. r(u, v) = r(u, v) + W

lj∗
; // Reward value r(u, v)

27. Q(u, v)← (1− α) ·Q(u, v)+
α · [r(u, v) + γ ·maxbQ(v, b)]; // Update Q-value

28. end for;
29. end for; // End of each episode in learning stage
30. r = s, R = φ; // Start of execution stage
31. while (r! = t)
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Figure 2. Comparing MARL, Greedy-P, and Greedy-R.

32. u = argmaxbQ(r, b);
33. R = R ∪ {u}, CR = CR + w(r, u), PR = PR + pu;
34. r = u;
35. end while;
36. RETURN R, CR, and PR.

Discussions. There are epi episodes of learning. In each
episode, the first step takes at most m · |V | and the second
step takes at most m + |E|. Thus the time complexity of
Algo. 2 isO(epi ·m · |V |). As a future work, we will study
if Algo. 2 can find the optimal prize-collecting route when
we increase the number of episodes in learning.

5. Performance Evaluation

Experiment Setup. We refer to Algo. 1 as Greedy-R, as it
visits the node with the largest prize-distance ratio in each
round. For comparison, we implement another greedy al-
gorithm called Greedy-P, which visits the node with the
largest prize in each round. We refer to our multi-agent
reinforcement learning algorithm Algo. 2 as MARL.

We compare our designed algorithms on traveling sales-
man tours of US capital cities [15]. The prize at each city
is a random number in [1, 100]. We write our own simula-
tor in Java on a Windows 10 with AMD Processor (AMD
Ryzen 7 5800X 8-Core) and 16GB of memory. In all the
plots, each data point is an average of 20 runs with a 95%
confidence interval. The values of the MARL-related pa-
rameters can be found in Algo. 2.

Comparing MARL, Greedy-P, and Greedy-R. Fig. 2
compares all three algorithms by varying the prize quotaQ
to be collected. Fig. 2(a) shows the total prize-collecting
distance yielded by all three algorithms. We observe that
MARL performs much better than Greedy-P, with an av-
erage of 65.6% of less traveling distance. We also ob-
serve MARL and Greedy-R perform very close to each
other. This shows that the MARL is a competitive learn-
ing algorithm compared to handcrafted greedy algorithms.
Fig. 2(b) shows the actual prizes collected by each algo-
rithm, where all the algorithms collect a bit over the re-
quired prize quota Q.



Impacts of Number of Agents m on MARL. Next, we
study the impacts of the number of agents m on the per-
formance of the MARL, by varying m from 1, 5, 10, 15,
to 20. Fig. 3(a) shows the total distances corresponding
to different prize quotas Q = 500, 1000, 1500, 2000. It
shows that the higher the Q, the longer distance of the
prize-collecting route. However, for each fixed Q, vary-
ing m does not have much effect on the resultant total dis-
tance of the MARL. This shows the distance only depends
on Q in our MARL algorithm. Fig. 3(b) shows, however,
that m significantly affects the time needed for the prize-
collecting learning process. For eachQ, with increasing of
m from 1 to 5, the execution time of the MARL algorithm
decreases dramatically.

6. Conclusions and Future Work

Prize-Collecting Traveling Salesman Problem (PC-
TSP) has recently drawn attention from the research com-
munity as it can be used to model emerging business ap-
plications, including autonomous driving and automated
warehouse. In this paper, we propose a multi-agent rein-
forcement learning (MARL) framework for the PC-TSP.
We observe that prize-collecting in PC-TSP is intrinsi-
cally related to cumulative reward maximization in rein-
forcement learning. We design an efficient and effective
MARL algorithm to solve the PC-TSP. Our solution is not
only comparable to or outperforms existing handcrafted
greedy algorithms, but also demonstrates the effectiveness
of multi-agent collaboration in reducing the Q-learning
time in PC-TSP. In future work, we will study the con-
vergence of our algorithm. We will also investigate how
to find an optimal number of agents that minimize the
prize-collecting learning time in PC-TSP. As PC-TSP is a
fundamental problem, the MARL techniques developed in
this paper could possibly apply to any applications where
prize-collecting is relevant.
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