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Abstract—We study a new variation of the Traveling Sales-
man Problem (TSP) called the Budget-Constrained Traveling
Salesman Problem (BC-TSP). BC-TSP is inspired by a few
emerging network applications, such as robotic sensor networks.
We design a prize-driven multi-agent reinforcement learning
(MARL) framework to solve the BC-TSP. The main novelty of
the framework, named P-MARL, is that it makes a connection
between the prize maximization in BC-TSP and the cumulative
reward maximization in reinforcement learning (RL) to design
a more efficient MARL algorithm. In particular, P-MARL inte-
grates the prizes available at nodes into the reward model of the
MARL to guide the cooperative effort of multiple learning agents.
Via extensive simulations using synthetic data of state capital
cities of the U.S., we show that a) the P-MARL outperforms the
existing prize-oblivious MARL work by collecting 28.8% of more
prizes under the same budget constraints, b) it takes two orders of
magnitudes of shorter training time than the state-of-the-art deep
reinforcement learning-based approach while collecting 45.3%
more prizes under the same budgets, and c) P-MARL collects
prizes at least 91.9% of optimal obtained by the Integer Linear
Programming (ILP) under different network parameters.

Keywords – Budget-Constrained Traveling Salesman Prob-
lem, Multi-Agent Reinforcement Learning

I. INTRODUCTION

Background. The Traveling Salesman Problem (TSP) [26]
is the most famous combinatorial optimization problem in
computer science, engineering, and operation research. Since
it was formulated mathematically in the 1930s, TSP has
been applied to solve a wide range of applications ranging
from traditional logistics of planning and control to recent
developments in microchip manufacture, robotics, genome
sequencing, and astronomy [11]. Traditional approaches to
tackling TSP, which is NP-hard, include various optimal,
approximation, and heuristics algorithms [26].

For the past few years, there has been a surge in solving
combinatorial optimization problems, including the TSP, using
reinforcement learning (RL) [15], [7], [31], [44], [42], [13].
This is partially fueled by the recent technological break-
through of artificial intelligence (AI) and machine learning
(ML), especially in the area of deep reinforcement learning
(DRL) [22], [17], [25]. RL integrates machine learning and
optimal control and models problem-solving as an intelligent
agent interacting with the dynamic environment and taking
actions to maximize its cumulative reward [38]. It is an

algorithmic paradigm completely different from the above
traditional and handcrafted approach. RL is particularly rele-
vant to solving sequential combinatorial optimization problems
such as TSP and the related vehicular routing problem (VRP),
demonstrated by recent research progress [7], [31], [15], [44].
This is because when the traveling salesman or vehicles in
the TSP and VRP decide to move from one node to another
in a road network to serve the customers, it resembles the
Markov decision process in RL, where the agent attempts
to find an optimal policy that maps states into actions to
maximize its collected reward. As such, RL has become
an ideal alternative to solve many NP-hard combinatorial
problems time-efficiently; see [30], [8] for the recent surveys
in this burgeoning field.

Motivation. In this paper, we study a new variation of the TSP
called the Budget-Constrained Traveling Salesman Problem
(BC-TSP). In contrast to the traditional TSP, wherein the goal
is to find a route to visit all the nodes in the most efficient
manner, in BC-TSP, each node is associated with a prize, and
the salesman has a budget; his goal is to visit as many nodes as
possible to maximize the collected prizes while staying within
his budget. Below is a motivating example.

Robotic Sensor Networks. In many robotic applications such
as search and rescue and planetary exploration [17], [25],
robots are dispatched to challenging environments to accom-
plish tasks of different importance. As a robot is mainly
powered by batteries, it might exhaust its battery power before
finishing all its assignment tasks. One critical goal is to
schedule the untethered robot to accomplish as many critical
tasks as possible before it returns to the charging station
for recharging. One specific application is data collection in
robotic sensor networks (RSNs) [23], where mobile robots are
dispatched into large-scale sensor fields to collect sensory data.
To optimize the performance of such RSN applications, how
to schedule robots to collect as much useful information as
possible before safely returning to the charging station is a
new and challenging problem. It has not been studied by any
of the existing work [12], [40], [41], [29]. BC-TSP can model
any robotic application where robots or autonomous vehicles
are dispatched to accomplish some tasks while their limited
battery power is a significant obstacle to their lasting operation.



BC-TSP is NP-hard, as TSP is a special case of BC-TSP
with an unconstrained budget. TSP only needs to sequence
all the nodes. In contrast, maximizing the prizes under budget
constraints in BC-TSP requires selecting a subset of the nodes
and finding a sequence to visit them, making it a more
challenging problem than the TSP.

Our Contributions. Unlike well-known combinatorial prob-
lems such as TSP and VRP, BC-TSP resembles RL in two
ways. First, the prominent feature of the BC-TSP, prizes
available at nodes, closely resembles the rewards in the RL.
Such similarity provides an opportunity to design new RL
algorithms to solve the BC-TSP better. Second, the objective
of the BC-TSP, which is maximizing the prizes collected by
the traveling salesman, closely resembles the RL agent’s goal
of maximizing the accumulative rewards. Both resemblances
serve as a common ground upon which more powerful RL
algorithms can be designed to solve the BC-TSP.

Despite the above observations, how to exploit the synergy
between the prize maximization in BC-TSP and the cumula-
tive reward maximization in RL to uncover more powerful
RL algorithms remains largely unexplored by the research
community. We ask the following question: How can we take
advantage of the unique problem feature of node prizes in
BC-TSP to design more efficient and effective RL algorithms?

We address this challenge by proposing a novel multi-agent
reinforcement learning (MARL) framework, termed prize-
driven MARL (P-MARL). P-MARL integrates the node prizes
into the RL’s reward model and action mechanism to not
only guide the learning agents in maximizing their rewards
but also yield an effective prize-collecting path under budget
constraints. We take a unique hybrid approach in which multi-
agents learn the node prizes independently and in parallel
and then collaboratively find an efficient prize-routing path.
Using a real-case application of 48 U.S. state capital cities, we
show that P-MARL outperforms a well-known prize-oblivious
MARL work called Ant-Q [16] by collecting up to 28.8%
more prizes under different network parameters.

To further validate the competitiveness of P-MARL, we
design a series of handcrafted combinatorial algorithms for
BC-TSP, including an optimal Integer Linear Program (ILP)
and two time-efficient greedy heuristics, wherein the salesman
iteratively visits an unvisited budget-feasible node with the
maximum available prize or the maximum prize-cost ratio
(defined later). Via extensive simulations, we show that P-
MARL collects prizes at least 91.9% of optimal obtained by
the ILP and constantly outperforms the handcrafted heuristics
by collecting more prizes.

II. RELATED WORK

This section reviews all the essential related work in BC-
TSP, RSN, DRL, and MARL.

Existing BC-TSP Research. A few works from the theory
and operations research community have studied BC-TSP [37],
[34], [5]. In his Ph.D. thesis, Sokkappa [37] systematically
studied BC-TSP. He proved the problem is NP-hard and that no

fully polynomial approximation scheme exists unless P = NP.
He proposed branch-and-bound-based heuristics to solve the
BC-TSP and optimal solutions for several special cases. Other
efforts have been developed to find approximation algorithms
for problems closely related to BC-TSP. Levin [5] presented a
(4 + ε)-approximation algorithm to the so-called budget prize
collecting tree problem, which finds a subtree with maximum
prizes while the cost of the tree (i.e., the sum of all its edge
weights) stays in a budget. Paul et al. [34] improved it by a
2-approximation algorithm based on a primal-dual approach
while maximizing the number of vertices visited (i.e., each
vertex has the same prize). However, none of them adopted
an RL approach, which is the main focus of this paper.
Recently, Ruiz et al. [35] studied a related problem called
prize-collecting traveling salesman problem, wherein the goal
is to collect a quota of prizes while minimizing the incurred
cost. Our work is the first to apply the MARL technique to
solve the BC-TSP.

Research in Robotic Sensor Networks (RSNs). BC-TSP is
inspired by the data-collection in RSNs, wherein robots with
limited battery power are dispatched to the sensor field to
collect sensory data [29], [19], [40], [36], [41], [24], [43].
Ma et al. [29] introduced mobile data collectors to gather data
in large-scale sensor networks. They formulate the problem as
a mixed-integer program and present heuristic data-gathering
algorithms. Guo et al. [19], [40] extended it by introducing
wireless energy-charging into mobile data collecting. They
formulated a network utility maximization problem that con-
sidered energy balance and the bounded sojourn time of the
mobile collector and designed a distributed algorithm.

The above work assumes enough battery power for the
robots to collect all the data in the field, which is not a valid
assumption in a large-scale sensor field. When sensor nodes
generate sensory data with different values (i.e., the prizes), a
critical question is how to schedule the robot to collect data
of maximum prizes before returning to the charging station.
Recently, Patil et al. [33], [32] solved a special case of BC-
TSP in the context of RSNs where the robot must start from
and end at the same depot node. They designed a series of
handcrafted combinatorial algorithms, which inspired our own
ones compared with the P-MARL.

Deep Reinforcement Learning (DRL) for Combinatorial
Optimization. Recently, DRL has been utilized to solve many
combinatorial problems [15], [7], [31], [44], [13]. Bello et
al. [7] presented a DRL-based framework for solving com-
binatorial optimization problems using neural network-based
function approximation algorithms. They solved the TSP by
training a recurrent neural network (RNN) and optimizing
its parameters using a policy gradient method. Nazari et
al. [31] further extend it to solve vehicle routing problems,
a generalization of TSPs, by considering a parameterized
stochastic policy and applying a policy gradient algorithm to
optimize its parameters. Dai et al. [13] combined RL and graph
embedding to incrementally construct a solution for combina-



torial optimization problems. Refer to [30] for a review of all
the DRL techniques for combinatorial optimization.

We argue that DRL is not the best learning technique for
solving BC-TSP. First, existing research uses deep learning
algorithms mainly for feature extraction in high-dimensional
spaces [14]. This is not needed in BC-TSP, as its most promi-
nent feature (i.e., the node prizes) is already available. Second,
training deep neural networks involves multiple iterations
of optimization algorithms such as gradient descent and its
variants with many parameters [6]. This is a computationally
intensive process that either takes time to converge to optimal
or, many times, only produces an approximate solution with
a large optimality gap [7]. With its effective reward model
and action mechanism involving prizes directly, P-MARL is a
much more efficient technique than DRL to solve the BC-TSP.

The closest DRL work to ours is by Wei et al. [42],
which proposed an RNN algorithm to solve the informative
path planning problem (IPP). In IPP, a robot is dispatched
into a sensing field to collect the sensing information, called
mutual information, which measures the informativeness of
data (i.e., sensor placement) collected along a path in the
field. The informativeness of the path can be associated with
the vertices, edges, or both on the path. IPP aims to find
the most informative path from a pre-defined start location
to a terminal location subject to a budget constraint. When
the informativeness is defined on the vertices and is additive,
IPP becomes the well-known orienteering problem (OP) [39].
In OP, each vertex is associated with a reward, and the goal
is to find a subset of vertices to collect a maximum reward
amount within a budget constraint. As OP is very similar to
the BC-TSP studied in this paper, we compare our MARL
algorithm with the RNN algorithm in [42]. In particular, we
show that P-MARL outperforms the IPP by collecting 45.3%
more prizes while taking 27.7 to 54.5% of its execution time.

Multi-Agent Reinforcement Learning (MARL). Most of
the classic MARL algorithms [9], [28], [21], [27], [18] are
derived from Q-learning [38]. In particular, Ant-Q [16] is
one of the most prominent MARL frameworks combining
the collective effort in colony optimization [10] and learning
agents in RL [38]. Although P-MARL is inspired by Ant-
Q [16], it significantly differs from Ant-Q in its goals and
techniques. Ant-Q is designed to solve the traditional traveling
salesman problem to minimize the cost of visiting all the
nodes. As such, it is prize-oblivious and does not consider
the node prizes of the salesman. In contrast, the P-MARL is
to solve the BC-TSP by maximizing the collected prizes while
staying within the budget. We integrate the node prizes into
the multi-agent learning process to select a subset of nodes to
visit and find its sequence to visit. We show in simulation that
P-MARL outperforms Ant-Q by collecting 28.8% more prizes
with the same budgets.

III. PROBLEM FORMULATION AND COMBINATORIAL
ALGORITHMS FOR BC-TSP

In this section, we formulate the BC-TSP and design
combinatorial algorithms including ILP and greedy algorithms.

A. Problem Formulation.

Given a weighted complete graph G(V,E), where V is a
set of nodes and E is a set of edges. Each edge (u, v) ∈ E
has a weight w(u, v) and each node i ∈ V has a prize
pi ≥ 0. The salesman has a budget of B and starts at node s,
visits a set of nodes to collect prizes, and stops at destination
node d. The goal of the BC-TSP is to find a prize-collecting
path R = {s = v1, v2, v3, ..., va = d}, a ≤ |V |, such
that the total prize available on this route PR =

∑
i∈R pi

is maximized while its cost CR =
∑a−1
i=1 w(vi, vi+1) ≤ B.

Here, the prize models the importance of different tasks that
various network applications attempt to accomplish, and the
budget is a resource constraint in the network applications.
Both prizes and budgets are application-specific. For example,
the prizes could be the importance of the search and rescue
missions or the value of the sensory data in the RSNs;
the budget could be the battery power of the robots or the
computing power of the agents in many AI/ML applications
[22]. When s=d, the salesman starts and ends at the same node.
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Fig. 1: Illustrating BC-TSP.

EXAMPLE 1: Fig. 1 illus-
trate BC-TSP with B = 8. The
numbers on the edges are their
weights, and the numbers in the
parentheses are the prizes avail-
able at nodes. Assume s = E
and d = C. The optimal route
from E to C is E, D, B, and
C, with a total prize of 8 and a total cost of 8. Other routes
are not optimal. E.g., although the path of E, A, B, and C is
within the budget with a cost of 7, its total prize is 7. �

B. Combinatorial Algorithms for BC-TSP [33]

ILP Solution. We solve BC-TSP optimally by formulating it
as an integer program ILP(A). Decision variable xi,j indicates
if edge (i, j) is on the prize-collecting path (i.e., node j is
visited immediately after node i is visited); xi,j = 1 if so and
0 otherwise. We introduce |V | − 1 position variables ui, i ∈
V −{s}, to indicate the order in which the nodes are visited.
us = 1 as s is the starting node and ui < uj indicates that node
i is visited before node j (but not necessarily immediately).
ui − 1 equals the number of edges along the prize-collecting
path from node s to node i.

(A) max
∑

i∈V \{d}

∑
j∈V \{s}

pi · xi,j (1)

s.t.
xi,j ∈ {0, 1}, ∀i, j ∈ V (2)∑
j∈V \{s}

xs,j =
∑

i∈V \{d}

xi,d = 1, (3)

∑
i∈V \{d}

xi,k =
∑

j∈V \{s}

xk,j ≤ 1, ∀k ∈ V \ {s, d} (4)

∑
i∈V \{d}

∑
j∈V \{s}

wi,j · xi,j ≤ B, (5)



2 ≤ ui ≤ |V |, ∀i ∈ V \ {s} (6)
ui − uj + 1 ≤ (|V | − 1) · (1− xi,j), ∀i, j ∈ V \ {s} (7)

Objective function 1 is to maximize the total collected
prizes. Constraint 2 is the integer constraint of xi,j . Con-
straint 3 guarantees that the prize-collecting path starts at node
s and ends at node d. Constraint 4 ensures the connectivity
of the path and that each node is visited at most once.
Constraint 5 guarantees that the total traveling cost on the
path does not exceed the given budget of B. Constraints 6 and
7 combined are called Miller–Tucker–Zemlin (MTZ) Subtour
Elimination Constraints [2]. They guarantee that one global
tour visits all the selected vertices instead of multiple subtours,
each visiting only a subset of the selected vertices.

Algorithm 1 Greedy Algorithm 1 for BC-TSP.

Input: A weighted complete graph G(V,E), s, d, and B.
Output: A route R from s to d, its cost CR and prize PR.
Notations: R: the current route found, initially {s};

CR: the length (i.e., the cost) of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially V − {s, d};
r: the current node where the salesman is located;
B: current available budget, is B initially;

1: r = s, R = {s}, CR = PR = 0, B = B, U = V −
{s, d} = {v1, v2, ..., v|V |−2};

2: Sort nodes in U in descending order of their prizes;
WLOG, let pv1 ≥ pv2 ...,≥ pv|V |−2

;
3: k = 1; // the index of the node with the largest prize
4: while (U 6= φ ∧ F(r,B) 6= φ) do
5: if (vk ∈ F(r,B)) then
6: R = R ∪ {vk};
7: CR = CR + w(r, vk), PR = PR + pvk ;
8: B = B − w(r, vk), U = U − {vk};
9: r = vk;

10: end if
11: k ++;
12: end while
13: R = R ∪ {d}, CR = CR + c(r, d), B = B − c(r, d);
14: return R, CR, PR, B.

Definition 1: (Budget-Feasible Nodes.) Given the node r
the traveling salesman is currently located and his available
budget B, its budget-feasible nodes, denoted as F(r,B), is
the set of unvisited non-destination nodes that the salesman
can travel to and then reaches destination node d. That is,
F(r,B) = {u|(w(r, u)+w(u, d) ≤ B)∧u ∈ U}, where U is
the set of unvisited nodes, initially U = V − {s, d}. �

Greedy Algorithm 1. In Algo. 1, at any node, the salesman
always visits a budget-feasible node with the largest prize. It
first sorts all the nodes in the non-ascending order of their
prizes (line 2) and then takes place in rounds (lines 4-12). In
each round, with the current node r and the currently available
budget B, it checks if there exist unvisited and budget-feasible
nodes (line 4). If so, it visits the one with the largest available

prize and updates all the information accordingly (lines 5-10).
Ties are broken randomly. It stops when there are no unvisited
nodes, or all the unvisited nodes are not budget-feasible (line
4), at which it goes to the destination node t and returns the
route with its total cost, total prizes collected, and its remaining
budget (lines 13 and 14). Its time complexity is O(|V |2).

Greedy Algorithm 2. Given an edge (u, v) ∈ E, and the
traveling salesman is at node u, we define the prize cost ratio
of visiting v, denoted as pcr(u, v), as the ratio between the
prize available at v and the edge weight w(u, v). That is,
pcr(u, v) = pv

w(u,v) . Greedy Algorithm 2 is similar to Algo. 1,
except it visits a budget-feasible node with the largest prize
cost ratio in each round. Its time complexity is O(|V |2). We
omit its pseudocode due to space constraints. Note that both
greedy algorithms also work for the instances with s = d.

EXAMPLE 2: In Fig. 1, with s = E and d = C, both
greedy algorithms yield the optimal solution of E, D, B, and
C, with a total cost of 8 and a total prize of 8. But in general,
they are not optimal. �

IV. PRIZE-DRIVEN MULTI-AGENT REINFORCEMENT
LEARNING ALGORITHM (P-MARL) FOR BC-TSP

In this section, we introduce the basic idea of RL, including
Q-learning, in the context of prize-collecting in BC-TSP. Then,
we introduce different stages and phases of prize-collecting
on top of the Q-learning that are conducive to multi-agent
learning. Finally, we present the P-MARL algorithm.

A. RL for BC-TSP

Prize-Collecting RL. We model an agent’s decision-making
for prize-collecting as a Markov decision process (MDP)
represented by a 4-tuple (S,A, t, r) [38]:
• S is a finite set of states,
• A is a finite set of actions,
• t : S ×A→ S is a state transition function, and
• r : S × A → R is a reward function, where R is a real

value reward.
The states S are all the nodes in a BC-TSP graph, and the

actions A available at a node are all the other nodes, as we
consider the complete graph. At any state s ∈ S, the agent
takes action a ∈ A to transition to another state t(s, a) ∈ S
while receiving a reward r(s, a) ∈ R. A policy π(s) : S → A
of the agent maps its current state s ∈ S into a desirable
action a ∈ A. We consider a deterministic policy wherein,
given the state, the policy outputs a specific action for the
agent. A deterministic policy suits the BC-TSP well, as when
an agent at a node takes action (i.e., follows one of its edges),
it will reach the other node of the edge. Note that existing
research of solving combinatorial optimization problems using
DRL (e.g., [13], [42]) treats the sequence of visited nodes or
partial solution as a stage, as they incrementally search for an
optimal solution using RL and graph embedding techniques.
Our approach is completely different, wherein multiple agents
independently and collaboratively find the optimal route for
BC-TSP. Thus each node is treated as a different state.
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Fig. 2: (a) Two stages of P-MARL: learning stage and execution stage. (b) Workflow of an episode in the learning stage.
Each episode has two phases: independent learning and cooperative learning. In the independent learning phase, each agent
independently takes actions and updates the PC-Table. In the cooperative learning phase, all the agents cooperatively update
the reward table and PC-Table using the maximum-prize route found in this episode.

Q-Learning. Q-learning is a family of value-based RL algo-
rithms [38] wherein an agent learns an optimal policy that
maximizes its accumulated reward. To achieve that, it learns
how to optimize the quality of its actions in terms of the Q-
value Q(s, a). Q(s, a) is the expected discounted sum of future
rewards obtained by taking action a from state s following an
optimal policy. The optimal action at any state is the action
that gives the maximum Q-value. For an agent at state s, when
it takes action a and transitions to the next state t, Q(s, a) is
updated using the Bellman equation below as a simple value
iteration update until no more improvement:

Q(s, a)← (1−α)·Q(s, a)+α·[r(s, a)+γ ·maxbQ(t, b)]. (8)

In Eqn. 8, 1 ≤ α ≤ 1 is the learning rate and maxbQ(t, b)
is the maximum reward that can be obtained from the
next state t. For BC-TSP, starting from source node s, the
traveling salesman follows the Q-table by moving to node
r = argmaxbQ(s, b) to collect its prize pr; this takes place
until it reaches the destination d. As the Q-table encodes the
prize-collecting path the traveling salesman takes, we also
refer to it as PC-Table.

B. P-MARL for BC-TSP

P-MARL augments Q-learning into a multi-agent scenario
that consists of two stages. In learning stage, the agents
independently and cooperatively build the PC-Table, and in
execution stage, the traveling salesman follows the PC-Table to
find the prize-collecting path and to collect the prizes. Fig. 2(a)
shows these two stages.

The learning stage itself takes place in episodes. We propose
a hybrid approach to effectively learn prize-collecting using
PC-Table and divide an episode into two phases, as shown
in Fig. 2(b). In the independent learning phase, each agent
independently follows a prize-based action mechanism and up-
dates the PC-Table. In the cooperative learning phase, agents
cooperatively update the reward table and PC-Table to encode
prize-collecting paths with significant prizes. We show via
extensive simulations that this hybrid approach, wherein agents
collaborate upon their in-parallel and individual exploration,

greatly empowers the learning experiences of the multi-agents
for prize-collecting. Below, we illustrate these two phases.

Independent Learning Phase. It consists of a prize-based
action mechanism and an independent update of the PC-Table.

Prize-based Action Mechanism. Located at node r, an agent
moves to the next node t to collect prizes by taking one of
the three actions below.
i) Exploitation, in which the agent always chooses the node

t = argmaxu∈U∩F (r,B)

[Q(r, u)]δ × pu
[w(r, u)]β

(9)

to move to. Here, U is the set of nodes not visited yet by the
agent and F(r,B) is the set of budget-feasible nodes of the
agent with budget B, and δ and β are preset parameters. That
is, an agent always moves to an unvisited budget-feasible node
u that maximizes the learned Q-value Q(r, u) weighted by the
prize pu available at node u and the length w(r, u). When q >
q0, where q is a random value in [0, 1] and q0 (0 ≤ q0 ≤ 1)
is a preset value, exploitation is selected; otherwise, the agent
takes the action of exploration below.
ii) Exploration, in which the agent moves to a node t by
following probability distribution:

p(r, t) =
([Q(r, t)]δ × pt)/[w(r, t)]β∑

u∈U∩F (r,B)([Q(r, u)]δ × pu)/[w(r, u)]β
. (10)

That is, a node u ∈ U ∩ F(r,B) is selected with probability
p(r, u), while

∑
u∈U∩F (r,B) p(r, u) = 1. p(r, t) characterizes

how good to move from node r to node t in terms of the
Q(r, t), w(r, t) and pt. The smaller the w(r, t) and the larger
the Q(r, t) and pt, the more desirable to move to t.
iii) Termination, in which the agent does not have unvisited
budget-feasible nodes to move to, i.e., U ∩ F(r,B) = φ. It
goes to destination t and terminates in this episode.

Eqns. 9 and 10 are the classic exploration-exploitation
tradeoff in RL, however, with node prizes considered to
facilitate the learning of the prize-collecting in BC-TSP. Note
that different agents in the learning stage can collect the prize
at each node multiple times.



Independent Update of PC-Table. After moving from node r
to node t following the above action mechanism, each agent
independently updates the PC-Table as follows:

Q(r, t) = (1−α)·Q(r, t)+α·γ ·maxb∈U∩F (t,B)Q(t, b). (11)

Compared to the original Q-learning update Eqn. 8, one
difference of Eqn. 11 is that it doesn’t include the reward value
r(r, t) in updating Q(r, t). This is because all agents work
independently and have not yet found the route with a large
prize. Instead, each agent uses its own discounted next-state
evaluation to update the PC-Table, independently contributing
to its update with their own experiences.

All agents repeat the above independent learning process
until they reach the destination d before exhausting budgets.
At this point, they each have found their prize-collecting paths
and enter the cooperative learning phase stated below.

Cooperative Learning Phase. This phase mainly consists of
a prize-based reward model for the agents to update the PC-
Table cooperatively.
Prize-based Reward Model. The reward model works as fol-
lows. First, the cooperative agents communicate with each
other and compare the prizes of their prize-collecting paths.
They find the one, say, Rmax, with the maximum prize, say,
Pmax. Second, for each edge (u, v) in Rmax, they increase its
reward value r(u, v) as follows:

r(u, v) = r(u, v) +
W

Pmax
, W is a constant. (12)

Finally, they update the Q-value Q(u, v) of those edges
(u, v) ∈ Rmax as follows:

Q(u, v) = (1− α) ·Q(u, v) + α · [r(u, v) + γ ·maxbQ(v, b)].

Each episode, with the above independent and cooperative
learning phases, is repeated until a fixed number of episodes
is reached or the PC-Table is no longer updated. Next, we
present our P-MARL algorithm, viz. Algo. 2.

P-MARL Algorithm. It begins with all the m agents at the
source node s with a collected prize of ps (lines 2-5). It
consists of two stages viz. a learning stage wherein the agents
independently and cooperatively encode the prize-collecting
path into the PC-Table (lines 1-29) and an execution stage
for the traveling salesman to follow the PC-Table to visit the
nodes and collect the prizes (lines 30-35).

In the independent learning phase (lines 6-23), when an
agent has enough budget, it independently follows the action
mechanism and updates the PC-Table (lines 9-14). Otherwise,
it goes to destination d and stops for this episode while waiting
for other agents to terminate (lines 16-19). In the cooperative
learning phase (lines 24-28), the m agents compare their prize-
collecting paths to find the maximum-prize route and update
the reward value and Q-value of the edges of this route.

Finally, in the execution stage (lines 30-35), the salesman
starts from s, visits the node with the largest Q-value in the
PC-Table, and ends at d, collecting the prizes along the way. It
returns the route, its cost and prize, and the remaining budget.

Algorithm 2 P-MARL Algorithm for BC-TSP.

Input: A weighted complete graph G(V,E), s, d, and B.
Output: A prize-collecting path R from s to d, CR, and PR.
Notations: i: index for episodes; j: index for agents;
epi: number of episodes in the P-MARL;
Bj : the available budget of agent j in an episode, initially B;
Uj : set of nodes agent j not yet visits, initially V − {s, d};
Rj : the route taken by agent j, initially {s};
lj : the cost (i.e., the sum of edge weights) of Rj , initially 0;
Pj : the prizes collected on Rj , initially ps;
rj : the node where agent j is located currently;
sj : the node where agent j moves to next;
isDonej : agent j has finished in this episode, initially false;
Q(u, v): Q-value of edge (u, v), initially pu+pv

w(u,v) ;
r(u, v): reward value of (u, v), initially 0;
R, CR, PR: the prize-collecting path, its cost, and its prize;
1: for (1 ≤ i ≤ epi) do
2: for (j = 1; j ≤ m; j++) do
3: rj = s, isDonej = false; // All m agents are at s
4: Pj = ps, Bj = Bj ;
5: end for
6: while (∃ j, 1 ≤ j ≤ m, isDonej == false) do
7: for (j = 1; j ≤ m; j++) do
8: if (isDonej == false) then
9: if (Uj ∩ F(rj , Bj) 6= φ) then

10: Finds the next node sj following action rule;
11: Rj = Rj ∪ {sj}, Pj = Pj + psj ;
12: lj = lj + w(rj , sj), Bj = Bj − w(rj , sj);
13: Q(rj , sj) = (1 − α) · Q(rj , sj) + α · γ ·

maxb∈Uj∩F (sj ,Bj)
Q(sj , b);

14: rj = sj , Uj = Uj − sj ;
15: else
16: isDonej = true, Rj = Rj ∪ {d};
17: lj = lj + w(rj , d), Bj = Bj − w(rj , d);
18: Q(rj , d) = (1 − α) · Q(rj , d) + α · γ ·

maxb∈Uj∩F (t,Bj)
Q(t, b);

19: rj = d; // Arrive at destination node d
20: end if
21: end if
22: end for
23: end while
24: j∗ = argmax1≤j≤mPj ;
25: for (each edge (u, v) ∈ Rj∗) do
26: r(u, v) = r(u, v) + W

Pj∗
; // W is a constant

27: Q(u, v) = (1 − α) · Q(u, v) + α · [r(u, v) + γ ·
maxbQ(v, b)];

28: end for
29: end for
30: r = s, R = {s}, CR = 0, PR = ps, B = B;
31: while (r! = d) do
32: u = argmaxbQ(r, b);
33: R = R ∪ {u}, PR = PR + pu,

CR = CR + w(r, u), B = B − w(r, u), r = u;
34: end while
35: return R, CR, PR, B.
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Fig. 3: Performance comparison in large networks.

We set the initial Q-value of edge (u, v) as pu+pv
w(u,v) , to reflect

the fact that the more prizes available and less length of an
edge, the more valuable of the edge for the salesman to travel.

Discussions. There are two ways to end the training. One is
to run a pre-specified number of epi episodes for training. In
this case, in each episode, the first phase takes at most m · |V |,
where |V | is the total number of nodes, and the second phase
takes at most m+ |E|, where |E| is the total number of edges.
Thus, the time complexity of Algo. 2 is O(epi ·m · |V |). The
second way is to terminate the training when the global-best
route is no longer updated after a specified number of episodes.
We use both approaches in our simulations.

We leave the convergence study of Algo. 2 as a future work.
Gutjahr et al. [20] proposed a graph-based framework to study
the ant system’s convergence. The framework is based on a
construction graph assigned to an instance of the optimization
problem under consideration, encoding feasible solutions by
walks. Given a problem instance, the solutions generated can
converge with a high probability of being arbitrarily close
to the optimal solution. However, as a general framework, it
does not tackle specific combinatorial problems, including the
BC-TSP. Considering the simple definition and the problem
features inherent in the BC-TSP problem, studying the con-
vergence of the P-MARL is promising future research.

V. PERFORMANCE EVALUATION

Experiment Setup. We use the traveling salesman tour of
48 state capital cities on the US mainland [4]. Given the
latitude and longitude of each city, the distance between any
two cities can be computed using the Haversine formula [1].
The prize at each city is a random number in [1, 100]. Given
that the shortest distance visiting all 48 continental US capitals
is 12,930 miles [4], we vary the budget from 4,000 miles to
10,000 miles so that budget serves as a constraint. We set
the number of agents m as 5 in all cases. Each data point
in our plots is an average of 10 runs with a 95% confidence
interval; in each run, a city is randomly chosen as the source
and destination for the traveling salesman.

We refer to our P-MARL algorithm Algo. 2 as P-MARL.
Our comparison consists of two parts. The first part compares
P-MARL with various non-DRL algorithms (Figs. 3 and 4).
We refer to the optimal ILP solution viz. ILP(A) as ILP, the
two greedy heuristics as Greedy1 and Greedy2, respectively.
We refer to the Ant-Q algorithm [16], which is a MARL
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Fig. 4: Performance comparison with ILP in small networks.

oblivious of the prizes, as Ant-Q. For fair comparison under
the budgets in BC-TSP, we modify the Ant-Q algorithm (Fig.
1 in [16]) such that each agent must return to the destination
node when there is insufficient budget. The hyper-parameters
in P-MARL and Ant-Q are: α = 0.1, γ = 0.3, q0 = 0.5,
δ = 1, β = 2, W = 1500, and number of episodes in the
training stage epi = 5000. We write our simulator in Java on
a Windows 10 with an AMD Processor (AMD Ryzen 7 3700X
8-Core) and 16GB of DDR4 memory.

For the second part, we compare with the state-of-the-
art DRL approach [42], which designed a recurrent neural
network (RNN) based Q-learning algorithm to solve the in-
formative path planning problem. We refer to this approach
as RNN. As this is the latest DRL work that solves a
similar problem, we compare P-MARL and Ant-Q with RNN
(Figs. 5, 6, and Table I). As RNN adopts PyTorch [3], the
deep learning platform, for a fair comparison, we implement
RNN, P-MARL, and Ant-Q in PyTorch to take advantage of
its full feature of building deep learning models. This part
is implemented on a MacOS 13.3.1 with an Apple M1 Pro
processor and 16 GB of unified memory.

Performance Comparison in Large Networks. We first
compare all algorithms using the large network of 48 cities by
varying the budgets. Fig. 3(a) shows in terms of total prizes
collected, P-MARL > Greedy2 > Ant-Q > Greedy1. This
demonstrates that P-MARL is the most competitive among the
four prize-collecting algorithms for BC-TSP. Greedy2 comes
next as it uses the prize-cost ratio to balance prizes collected
and distance traveled. Ant-Q comes third, as it is prize-
oblivious and does not try to maximize prizes. Greedy1 col-
lects significantly fewer prizes than the other three. Although
it always collects the largest size possible, and for the same
reason, it could travel long distances to do so and thus exhaust
its budget quickly, resulting in the least amount of prizes being
collected. In particular, the P-MARL outperforms Ant-Q by up
to 16.9%. Fig. 3(b) shows that PMARL, Greedy1, and Greedy2
travel the same distances, constrained by the given budget.
In contrast, Ant-Q travels a significantly smaller distance and
does not exhaust its budget. This is because to maximize the
prizes while staying within budget, we introduce “budget-
feasible nodes” for those three algorithms. Ant-Q does not
have this facility. Instead, as its goal is to minimize the travel
cost, it tends to collect prizes in its proximity. Although it has
some unused budget, it is not big enough for the salesman to
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Fig. 5: Comparing P-MARL, Ant-Q, and RNN in the training stage.

travel further to collect prizes.

Performance Comparison with ILP in Small Networks.
Next, we compare P-MARL and Ant-Q with the ILP to
investigate how close their performance is to the optimal
solution. As ILP takes a long time to execute in 48-city cases,
we randomly chose 20 cities for comparison. Fig. 4(a) shows
that in most cases, P-MARL collects prizes at least 91.9%
of optimal prizes by the ILP, while collecting up to 28.8%
more prizes than Ant-Q. However, when the budget is 10,000,
all three algorithms collect around the same amount of prize.
This is because this is enough budget for all the algorithms to
visit all the 20 nodes, thus collecting the same prize. Fig. 4(b)
shows Ant-Q travels less than P-MARL and ILP, focusing on
short prize-collecting distances.

Comparing P-MARL, Ant-Q, and RNN. Next, we imple-
ment P-MARL, Ant-Q, and RNN in PyTorch, which has a full
feature of deep learning models. We compare them in both the
training and execution stages. Fig. 5 shows their rewards (i.e.,
the prize of the maximum-prize route found in each episode)
in the training stage of 5,000 episodes. We randomly chose a
city as the source and destination node. The rewards for RNN
are computed as a running average from 100 episodes and
with a 95% confidence interval following [42]. It shows that
under various budgets, in terms of total prizes collected, P-
MARL > RNN > Ant-Q, again demonstrating that P-MARL
is the most competitive prize-collecting algorithm for BC-TSP
besides the ILP. Furthermore, P-MARL learns to increase its
prizes quickly and smoothly, as shown by the steep climb
in early episodes and the flat plateau in later episodes. In
contrast, RNN learns slowly and with high variations of the
collected prizes at different episodes. This can be attributed to
the “black box” nature of neural networks, including RNNs,
which are a computationally intensive process that takes time
to compute and, many times, only produces a solution with a
large optimality gap [7].

On the other hand, Ant-Q, being a prize-oblivious MARL
algorithm, does not seek to increase the prizes at all in the
learning process, resulting in the least amount of prizes in
all three algorithms and a plateau from the early stage of
episodes. Table I shows their running time of the learning stage
(i.e., the training time) under different budgets. As RNN trains
deep neural networks with a large number of weight and bias
parameters and involves computation-intensive optimization

algorithms such as gradient descent, its training time is two
orders of magnitudes longer than P-MARL and Ant-Q. Ant-Q
has a shorter training time than P-MARL, as it focuses on the
shortest prize-collecting path.

Budget (miles) 4000 6000 8000 10000
P-MARL 11.27 14.04 26.87 18.99

Ant-Q 5.93 11.19 10.69 9.42
RNN 692.62 968.34 1122.51 1221.34

TABLE I: Comparing training time of P-MARL, Ant-Q, and RNN.

Finally, we compare the final prize-collecting results in
the execution stage, wherein a traveling salesman follows the
learned Q-table to visit different cities to collect the prizes.
Fig. 6(a) shows that P-MARL outperforms RNN and Ant-Q
in collecting more prizes in most cases (except when at the
large budget of 10,000), revealing P-MARL is an effective
prize-collecting algorithm. In particular, P-MARL collects up
to 45.3% more prizes than RNN. Fig. 6(b) shows that all the
algorithms are constrained by the budget; as such, they all
travel the same distance. Fig. 6(c) comparing the execution
time of three algorithms. It shows that P-MARL takes only
27.7 to 54.5% of the execution time of RNN, due to the
high computational cost of DRL [6]). We also observe that
Ant-Q has the smallest execution time. As Ant-Q finds the
shortest-distance route within the budget constraint instead of
P-MARL’s maximum-prize route of a possibly longer distance,
it takes less time for the salesman to travel, resulting in less
execution time than P-MARL.
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Fig. 6: Comparing P-MRL, Ant-Q, RNN in the execution stage.

VI. CONCLUSIONS

Budget-constrained TSP (BC-TSP) uniquely arises from
emerging network applications, including robotic sensor net-
works, electric cars in ride-sharing, and automated ware-
houses, wherein robots or autonomous vehicles with limited
battery power are dispatched to accomplish some tasks. With



its theoretical roots, BC-TSP can model any sequential de-
cision problem targeting tasks of different importance under
resource constraints. We utilized the unique problem features
of BC-TSP to design a MARL algorithm called P-MARL.
Using a real-case application, we show that P-MARL outper-
forms the state-of-the-art DRL work, prize-oblivious MARL
work, and traditional handcrafted combinatorial algorithms
while performing close to the ILP optimal solution under
different network parameters. To our knowledge, our work is
the first to utilize problem features of combinatorial optimiza-
tion problems in general and BC-TSP in particular to design
efficient MARL algorithms. We hope this perspective can stir
some discussion about how to utilize problem features and
cooperations of simple RL agents to better solve combinatorial
optimization problems, in contrast to many existing works that
resort to the brute force of DRL.
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