
Energy-Efficient Virtual Machine Replication and
Placement in a Cloud Computing System

Hadi Goudarzi and Massoud Pedram
University of Southern California

Department of Electrical Engineering
{hgoudarz, pedram}@usc.edu

ABSTRACT – By utilizing Virtual Machines (VM) and
doing server consolidation in a datacenter, a cloud
provider can reduce the total energy consumption for
servicing his clients with little performance degradation. In
particular, the cloud provider can take advantage of
dissimilar workloads and by assigning these workloads to
the same server, can utilize fewer active servers to service
his clients. Placing multiple copies of a VM on different
servers and distributing the incoming requests among
these VM copies can reduce the resource requirement for
each VM copy and help the cloud provider utilize the
servers more efficiently. In this paper, the problem of
energy-efficient VM placement in a cloud computing
system is solved. Precisely, we present an approach that
first creates multiple copies of VMs and then uses dynamic
programming and local search to place these copies on the
physical servers. Simulation results show that the proposed
algorithm reduces the total energy consumption by up to
20% with respect to previous work.1

I. INTRODUCTION

Demand for computing power has been increasing due to
the penetration of information technologies in our daily
interactions with the world both at personal and public levels,
encompassing business, commerce, education, manufacturing,
and communication services. At the personal level, the wide
scale presence of online banking, e-commerce, SaaS (Software
as a Service), social networking and so on produce workloads
of great diversity and enormous scale. At the same time
computing and information processing requirements of various
public organizations and private corporations have also been
increasing rapidly. Examples include digital services and
functions required by various industrial sectors, ranging from
manufacturing to housing, from transportation to banking.
Such a dramatic increase in the computing demand requires a
scalable and dependable information technology (IT)
infrastructure comprising of servers, storage, network
bandwidth, physical infrastructure, Electrical Grid, IT
personnel and billions of dollars in capital expenditure and
operational cost to name a few.

Virtualization technology makes the independence of
applications and servers feasible. Nowadays, computing
systems heavily rely on this technology. Virtualization

1 This work is supported in part by a grant from the National Science
Foundation, CISE Directorate.

technology provides a new way to improve the power
efficiency of the datacenters: (server) consolidation, which
enables the assignment of multiple virtual machines (VMs) to
a single physical server. By this action, some of the available
servers can be turned off or put into some deep sleep state,
thereby, lowering power consumption of the computing
system. The technique works because modern servers tend to
consume 50% or so of their peak power in idle state (this
effect is known as the non-energy-proportionality of modern
servers [1].) Consolidation involves performance-power
tradeoff. More precisely, if workloads are consolidated on
servers, performance of the consolidated VMs may decrease
because of reduction of available physical resources (CPU,
memory, I/O bandwidth) although the overall power efficiency
improves because fewer servers are needed to service the
VMs.

Low utilization of servers in a datacenter is one of the most
important factors responsible for low power efficiency of
datacenters. For example, the average utilization of servers in
a Google datacenter was reported to be 30% [2]. Due to the
non-energy-proportional nature of the current servers, it is
prudent from an energy efficiency viewpoint to have as few
servers as possible turned on, with each ON server being
highly utilized. Hence, there is a strong justification for server
consolidation in current enterprise computing centers.

The IT infrastructure provided by the datacenter
owners/operators must meet various Service Level
Agreements (SLAs) established with the clients. The SLAs
may be resource related (e.g., amount of computing power,
memory/storage space, network bandwidth), performance
related (e.g., service time or throughput), or even quality of
service related (24-7 availability, data security, percentage of
dropped requests.) To minimize the energy consumption using
consolidation, these SLA constraints should be considered.

A datacenter comprises of thousands to tens of thousands
of server machines, working in tandem to provide services to
the clients, see for example reference [1], [3] and [4]. In such a
large computing system, in spite of non-energy-proportional
characteristics of current server machines, energy efficiency
can be maximized through system-wide resource allocation
and server consolidation. The problem of resource
provisioning is challenging due to the diversity that is present
in the hosted client applications. For example: some client
applications may be computation-intensive while others may
be memory-intensive, some applications may run well together
while others do not, and so on.

The energy cost and admission control policy in a cloud
computing system are affected by its power and VM
management policies. Power management techniques [3]-[7]
control the average and peak power in a distributed or
centralized fashion in the datacenters VM management
techniques [8]-[11] control the VM placement on the physical
servers as well as VM migration from one server to next. In
this paper, we focus on the VM placement to minimize the
energy cost in the cloud computing system.

Generating multiple copies of a VM and placing them on
different servers is one of the basic ways to increase the
service reliability. In this approach, only the original copy of
the VM handles the requests while the other copies are idle. In
this paper, we propose to exploit all of these VM copies for
servicing the requests. Under this new scenario, resource
provided to each copy of the VM should satisfy SLA
requirements and the set of distributed VMs should be able to
service all of the incoming requests. For this reason, memory
Bandwidth (BW) provided for each copy of the VM should be
the same as the original VM and the total CPU cycles
provided for all of the VM copies should be equal to those
provided to the original copy of the VM. Increasing the
number of VM copies increases the average utilization level of
servers because by increasing the number of VM copies, we
have more opportunity to use smaller VMs to fully utilize the
servers, and thereby, avoid having under-utilized servers.
Using this approach and an effective VM placement
algorithm, which determines the number of VMs and places
them on the physical machines, the energy cost of the system
can be reduced by up to 20% (cf. Section VI.)

The proposed VM placement algorithm is based on the
dynamic programming and local search methods. The dynamic
programming method determines the number of copies for
each VM and places them on servers whereas the local search
tries to minimize the energy cost by turning off the under-
utilized servers.

The remainder of this paper is organized as follows.
Related work is presented in the next section. The system
model and problem formulation are given in section III and
IV. The proposed algorithm is presented in section V.
Simulation results are provided in the section VI and the
conclusions are stated in the last section.

II. RELATED WORK

Distributed resource allocation is one of the most
challenging problems in the resource management field. This
problem has attracted a lot of attention from the research
community in the last few years. In the following we provide a
review of most relevant prior work.

Srikantaiah et al. [12] presented an energy-aware
consolidation technique to decrease the total energy
consumption of a cloud computing system. The authors
empirically modeled the energy consumption of servers as a
function of CPU and disk utilization. Next, they described a
simple heuristic to consolidate the processing works in the
cloud computing system. Performance of the solution is
evaluated only for very small input size.

A VM placement heuristic to maximize the number of
serviced applications, minimize the migration cost, and
balance the load in physical machines is presented in [8]. The
main focus of this work is on the scalability of the problem but
the problem of assigning VMs on physical servers when the
operational cost minimization is the objective is not
investigated.

A consolidation manager for homogenous clusters called
Entropy is proposed in reference [9]. This consolidation
manager considers the memory and CPU requirements of the
VMs and migration overhead in the system. The status of each
VM (being active or inactive) can change in time and this
signifies the importance of having dynamic consolidation
manager. The authors proposed a dynamic consolidation based
on constraint programming methods considering the
performance overhead of migrating (active and inactive) VMs
to different servers.

Bobroff et al. [10] proposed methods for classification and
forecasting of VM workload. It is shown that applying
dynamic VM migration is most beneficiary in case of certain
workload characteristics. Based on these methods, they
proposed a dynamic VM management algorithm to minimize
the total power consumption with a constraint on SLA of each
VM or minimize the SLA violation rates considering a fixed
set of active servers.

Power and migration cost aware application placement in
virtualized systems is proposed in [11]. Authors present a
power-aware VM placement controller in a system with
heterogeneous server clusters and virtual machines. pMapper
architecture and placement algorithms to solve the problem of
minimizing power subject to a fixed performance requirement
are investigated. The proposed solution is presented based on
assumption of predetermined performance level for VMs. The
proposed algorithms for VM placement, which are based on
bin packing heuristics, do not consider multiple copies of VM
and only consider one dimension of resource in the servers.

Liu et al. [13] described a SLA-based profit optimization
problem in electronic commerce hosting datacenters. A fixed
set of servers are assumed to be active and application
placement on the servers are done to maximize the total SLA
profit. SLA in this work is modeled as a response time
constraint and less than a portion (e.g. 2%) of request’s
response time can violate that constraint. This kind of SLA are
used in [14] to optimize the energy consumption and
migration cost in the cloud computing system.

Zhang et al. [15] and Ardagna et al. [16] present heuristics
to allocate resources in a virtualized environment to maximize
the profit and minimize the energy cost in the system while
meeting the SLA. The authors used a complex model for
energy calculation to increase the accuracy. They solved the
problem by generating a feasible solution and improving the
quality of the solution by local search. The presented problem
considers soft SLA contracts in which client pays the cloud
provider based on the average response time provided to its
requests. These kind of SLAs are considered in different
works such as [17]-[19]. The VM placement problem with
constant resource requirements for each VM is not considered
in these works.

Our paper considers the resource management problem in
a cloud computing system. Key features of our formulation
and proposed solution are that we consider heterogeneous
servers in the system and use a two dimensional model of the
resource usage accounting for both computational and
memory BW. We propose multiple copies of VMs to be active
in each time to reduce the resource requirement for each copy
of VM and help to increase the energy efficiency of the
consolidation and VM placement algorithm. A novel approach
based on dynamic programming and local search is proposed
to determine the number of copies for each VM and place
them on servers to minimize the total cost in the system. No
previous work considers all these aspects together when
addressing the cloud level resource management problem.

III. SYSTEM MODEL

In this section, detail of the assumptions and system
configuration for the VM placement problem are presented.

To increase the paper readability, Table I presents key
symbols and definitions used in this paper. Each client is
identified by a unique id, denoted by index i. Each server in
the cloud computing system is similarly identified by a unique
id, denoted by index j.

Table I. NOTATION AND DEFINITIONS

Symbol name Definition

ܿ
, ܿ

Required memory BW and total processing
capacity for the ith client

 Max. # of servers allowed to serve the ith clientܮ
 Set of servers of type kݏ

ܥ
, ܥ

Total CPU cycle and memory BW of the jth
server, shorthand notation for ܥௌೖ

 and ܥௌೖ

ܲ
 Constant power consumption of the jth server

operation in the active mode. Same as ௌܲೖ

ܲ
୮	

Power of operating the jth server which is
proportional to the utilization of processing
resources, shorthand notation for ௌܲೖ

Te Duration of a decision epoch in seconds

 A pseudo-Boolean integer to determine if the jthݔ
server is ON (1) or OFF (0)

 A pseudo-Boolean integer to determine if the ithݕ
VM is assigned to the jth server (1) or not (0)

߶
 , ߶

	 Portion of the processing and memory BW
resources of the jth server that is allocated to the ith
client

߶
, ߶

	 Portion of the processing and memory BW
resources of the jth server that is allocated to any
client

A. Cloud Computing System

In the following paragraphs, we describe the type of the
datacenter that we have assumed as well as our observations
and key assumptions about where the performance bottlenecks
are in the system and how we can account for the energy cost
associated with a client’s VM running in the datacenter.

A datacenter comprises of a number of potentially
heterogeneous servers chosen from a set of known and well-
characterized server types. In particular, servers of a given

type are modeled by their processing capacity or CPU cycles
∗ܥ)

) and memory BW (ܥ∗) as well as their energy cost, which
is directly related to their average power consumption. We
assume that local (or networked) secondary storage (disc) is
not a system bottleneck.

The operational cost of the system is assumed to be the
total energy cost of serving all clients’ requests. The energy
cost is calculated as the server power consumption multiplied
by the duration of the epoch in seconds (ܶ). The power of a
server is modeled as a constant power cost (∗ܲ

) plus another
variable power cost, which is linearly related to the utilization
of the server (with slope of ∗ܲ

). Note that power cost of
communication resources and the computer room air
conditioning (CRAC) units are amortized over all servers and
communication/networking gear in the datacenter, and are thus
assumed to be relatively independent of the clients’
workloads. Precisely, these costs are not included in the
equation for datacenter power cost.

B. Client and Virtual Machines

Clients in the cloud computing system are represented with
VM. By using workload prediction with consideration of the
SLA, the amount of resources that each client needs in order to
avoid SLA violation can be determined. These VMs are
assumed to generate processing requests during the considered
epoch. This assumption is valid for clients corresponding to
online services. In contrast, this assumption is not applicable
for batch applications.

Each VM may be copied onto different servers (i.e.,
requests generated by a single client can be assigned to more
than one server). This request distribution can decrease the
quality of the service if the number of servers that process the
client’s requests becomes large [15]. Therefore, in this paper,
we impose an upper bound on this number; ܮ limits the
maximum number of copies of the VM in datacenter (this limit
is set to 1 if the VM cannot have multiple copies). If multiple
copies of a VM are placed on different servers, the following
constraints should be satisfied:
∑ ߶

ܥ

 ൌ ܿ
 (1)

߶
ݕܥ

 ൌ ܿ
 (2)

where ߶
 and 	߶

 denote the portion of the jth server CPU
cycles and memory BW allocated to the VM related to the ith
client. Moreover, ݕ is a pseudo-Boolean integer to determine
if a VM related to client i is assigned to the jth server or not.
Constraint (1) enforces the summation of the reserved CPU
cycles on the assigned servers to be equal to the required CPU
cycles for client i. Constraint (2) enforces the provided
memory BW on assigned servers to be equal to the required
memory BW for the original VM. This constraint enforces the
cloud provider not to sacrifice the Quality of Service (QoS) for
its clients. An example of multiple copies of a VM is shown in
Figure 1. In this figure, the difference between heights of the
horizontal bars shows the memory BW requirement while the
difference between widths of the vertical lines show the CPU
cycle requirement of each VM.

C. VM Management System

Datacenter management is responsible for admitting the
VMs into the datacenter, servicing them to satisfy SLA
requirements, and minimizing the energy cost of the
datacenter. In this paper, we focus on the VM controller
(VMC). The VMC is responsible for determining the resource
requirements of the VMs and placing them on servers.
Moreover, to mimic the workload changes, the VMC should
perform VM migration. The VMC performs these tasks based
on two different optimization procedures: semi-static
optimization and dynamic optimization. Semi-static
optimization procedure is performed periodically (at periods
of Te), whereas dynamic optimization procedure is performed
whenever it is needed.

In the semi-static optimization procedure, the VMC
considers the active set of VMs, previous assignment solution,
feedbacks generated from power, thermal and performance
sensors, and workload prediction to generate the best VM
placement solution for the next epoch. Period of performing
semi-static optimization depends on the type and size of the
datacenter and workload specifications. In the dynamic
optimization procedure, the VMC finds a temporary VM
placement solution by migrating, creating or removing some
number of VMs to respond to performance, power budget, or
critical temperature violation.

In this paper, we focus on the semi-static optimization
procedure of the VMC. In this procedure, resource
requirements of VMs are assumed to be determined based on
the SLA specification and workload estimation for the next
decision epoch. The duration of the decision epoch is long
enough for us to neglect the task migration penalty (less than
100ms for live migration [11]) with respect to the gain of the
global optimization. Therefore, the energy cost optimization is
performed without any knowledge of the state of the cloud
computing system in the previous decision epoch. However,
the nature of the proposed solution allows the system to
account for the migration cost if this becomes an important
consideration.

The role of the semi-static optimization procedure in the
VMC is to determine whether to create multiple copies of
VMs on different servers and assign VMs to servers.

Considering fixed payments by the clients for the cloud
services they receive, the goal of this optimization is to
minimize the energy cost of the active servers in datacenter.
An exemplary solution for assigning six VMs with different
resource requirements on two heterogeneous servers is
depicted in Figure 2.

IV. PROBLEM FORMULATION

In this paper, a VM placement problem is considered with
the objective of minimizing the total energy consumption in a
decision epoch while servicing all VMs in the cloud
computing system.

The exact formulation of the aforesaid problem (called
MERA for Multi-dimensional Energy-efficient Resource
Allocation) is provided below (cf. Table I.)

݊݅ܯ ܶ ݔ ൬ ܲ
 ܲ

 ߶

൰

 (3)

subject to:
߶
 ൌ ∑ ߶

 1 ∀݆ (4)

߶
 ൌ ∑ ߶

 1 ∀݆ (5)

∑ ܥ
߶

 ൌ ܿ

 ∀݅, ݆ (6)

ݕ ߶
 , ݕ 1 ߶

 െ ,݅∀ 		ߝ ݆ (7)

߶
ݕܥ

 ൌ ܿ
 ∀݅, ݆ (8)

∑ ݕ ∀݅ (9)ܮ
ݔ ∑ ߶

 ∀݆ (10)

ݕ ∈ ሼ0,1ሽ, ݔ ∈ ሼ0,1ሽ, ߶
 0,	߶

 0 ∀݅, ݆ (11)

where ߝ is a very small positive value, and, ݔ is a pseudo-
Boolean integer variable to determine if the jth server is ON
 .(=0ݔ) or OFF (=1ݔ)

The objective function is the summation of the energy cost
of the ON servers based on a fixed power factor and a variable
power term linearly related to the server utilization. In this
problem, ݔ, ݕ and ߶

 are the optimization variables.
The constraints capture the limits on the number of

available servers and clients. In particular, inequality
constraints (4) and (5) represent the limit on the utilization of
the processing and memory BW in the jth server, respectively.
Constraint (6) ensures that required processing capacity for
each VM is provided. Constraint (7) generates a pseudo-

Figure 1. An example of multiple copies of a VM Figure 2. An exemplary solution for assigning six heterogeneous VMs on two
heterogeneous Servers

Boolean parameter that determines if a copy of a VM is
assigned to a server (ݕ ൌ 1) or not (ݕ ൌ 0). Constraint (8)
ensures the memory BW needs of a VM assigned to a server is
provided and constraint (9) ensures that the number of copies
of a VM does not exceed the maximum possible number of
copies. Constraint (10) generates the pseudo-Boolean
parameter related to the status of each server. Constraint (11)
specifies the domains of optimization variables.

Theorem I: Generalized Assignment Problem (GAP) [20]
can be reduced to the MERA problem.

Proof: Consider a version of the MERA problem in which
ݐݏܿ

 is equal to zero for every server and ܮ is equal to one
for every VM. In this problem, assigning each VM (only one
copy) to each server has different cost and each server has two
dimensional resources that can be assigned to VMs. So, we
can solve any two-dimensional GAP problem using MERA
problem’s solution in a special case.

Theorem II: Bin Packing Problem (BPP) [20] can be
reduced to MERA problem.

Proof: Consider a version of the MERA problem in which
ݐݏܿ

 is equal to zero for every server and ܮ is equal to one
for every VM. The objective in this problem is to minimize the
number (or a weighted summation) of the ON servers
considering the two-dimensional resource availabilities on
each server and resource requirement of each VM. So, we can
solve any two-dimensional BPP problem using MERA
problem’s solution in a special case.

Theorem I and II shows that MERA is a combination of
two NP-hard problems. Considering either theorem I or II,
MERA is at least as hard as a known NP-hard problem [20]
and thus it is an NP-hard problem. Indeed,	 even	 deciding
whether a feasible solution exists for this problem, does not
have an efficient solution. In this paper, we consider a case in
which the required resources for VMs are smaller than the
available resources in the datacenter. This means we consider
energy minimization with a fixed set of VMs instead of
maximizing the number (or the total profit) of VMs that are
served in the datacenter. So, we assume that a simple greedy
algorithm (similar to First Fit Decreasing (FFD) heuristic [20])
will find a feasible solution to MERA for the specified inputs
in the problem definitions. Another important observation
about this problem is that the numbers of clients and servers in
this problem are very large; therefore, a critical requirement
for any proposed heuristic should be its scalability.

Different versions of this problem are considered in the
literature. Some work consider this resource allocation
problem along with performance modeling by using the
queuing theory while other work considers a fixed size VM
placement problem. In most of the previous work, simple
solutions based on known heuristics for well-known problems
such as Knapsack problem, bin packing, and generalized
assignment problem are proposed. In this work we examine
the effect of multiple active copies of VMs and an effective
algorithm to reduce the energy consumption in the cloud
computing system is proposed.

V. PROPOSED ALGORITHM

In this section, a heuristic for solving the MERA problem
is presented. An algorithm based on Dynamic Programming
(DP) is presented to determine the number of copies of each
VM and assign these VMs to the servers. This decision
determines which servers are active for the next epoch and the
utilization of those servers. The goal of the algorithm is to
minimize the total energy cost of the active servers. To
improve the results, a local search is considered to minimize
the number of active servers as much as possible.

In the beginning of the VM placement, clients are ordered
based on their processing requirement. Based on this ordering,
the optimal numbers of copies of the VMs are determined and
these copies are placed on servers using dynamic
programming. In the local search method, servers are turned
off based on their utilization and VMs are placed on the rest of
the servers (if possible) to minimize the energy consumption
as much as possible.

The details of the Energy-efficient VM Replication and
Placement algorithm or EVRP for short are presented below.

A. Energy Efficient VM Placement Algoritmh

At the beginning of the algorithm, ߶
 and ߶

 for each
server are set to zero. A constructive approach is used to place
VMs on the servers. VMs are sorted based on their processing
requirements in a non-increasing order. For each VM, a
method based on DP is used to determine the number of
copies placed on different servers.

Energy cost of assigning a copy of the ith VM to a server
from server type k is calculated based on equation (12).
ܿሺߙሻ ൌ ߶

ܲ
 ܲ

ܿ
/ܥ

 (12)
where ߙ (between 1 and ܮ) denotes the size of the assigned
VM to the server. ߶

 is calculated from equation (13).

߶
 ൌ ሺܿߙ

 ⁄ܮ ሻ/ܥ
 (13)

For example, in case of ܮ=4 if half of the CPU cycle
requirement of the VM is provided by a copy of the VM, ߙ
and ߶

 is equal to 2 and 0.5ܿ
/ܥ

.
The first term in (12) is the cost related to the CPU

utilization of the server. The second term is the replacement of
the constant energy cost of the active server.

For each VM, equation (12) is calculated for each server
type and different values of ߙ (between 1 and ܮ). Moreover,
for each server type, L୧ active servers and L୧ inactive servers
that can service at least the smallest copy of the VM are
selected as candidate hosts. For active servers, the value of
cost is decremented by ߝ to select them over inactive servers in
an equal energy scenario.

After selecting active and inactive candidate servers for
each server type and calculating cost for each possible
assignment, the problem is reduced to (14).
݊݅ܯ ∑ ݕ

ఈܿሺߙሻ∈ (14)
subject to:
∑ ݕߙ

ఈ
∈ ൌ (15)ܮ

where ݕ
ఈ denotes the assignment parameter for jth server with

VM with size of ߙ (1 if assigned and 0 otherwise). Moreover,
ܲ denotes the set of candidate servers for this assignment.

DP is used to solve this problem and find the best
assignment decision. In this DP method, candidate servers
may be processed in any order. The method examines all the
possible VM placement solution efficiently without
calculating every possible solution in a brute-force manner.
Using this method, the optimal solution can be found.

Complexity of this DP method is ܱሺ2ܮ
ଶܭሻ , where K

denotes the number of server types that are considered for this
assignment. After finding the assignment solution, ߶

 and ߶

of the selected servers are updated. Then, the next VM is
chosen and this procedure is repeated until all VMs are placed.

Algorithm 1 shows the pseudo code for this assignment
solution for each VM.
Algorithm 1: Energy Efficient VM Placement

Inputs: C୨
୫, C୨

୮, P୨
, P୨

୮, c୧
୫, c୧

୮, L୧
Outputs: ϕ୧୨

୮, ϕ୧୨
୫ (i is constant in this algorithm)

1 P={}
2 For (k = 1 to number of server types)
3 ON=0; OFF=0;
4 For (α ൌ 1 to L୧)
5 ϕ୧୨

୮ ൌ ሺαc୧
୮ L୧⁄ ሻ/C୨

୮
6 c୧୩ሺαሻ ൌ ϕ୧୨

୮P୨
୮ P୨

c୧
୫/C୨

୫	
7 End
8 J ൌ ሼj ∈ s୩|ሺ1 െ ϕ୨

୫ሻ c୧
୫/C୨

୫}
9 J ൌ ሼj ∈ s୩|ϕ୨

୮ ൌ 0, ሺ1 െ ϕ୨
୫ሻ c୧

୫/C୨
୫ሽ

10 Foreach (j ∈ s୩)
11 If (j ∈ J& ON൏ L୧) 		
12 P ൌ P ∪ ሼjሽ , ON++, cost୧୨ሺαሻ ൌ c୧୩ሺαሻ െ ε
13 Else if (j ∈ J& OFF൏ L୧)
14 P ൌ P ∪ ሼjሽ , OFF++, cost୧୨ሺαሻ ൌ c୧୩ሺαሻ
15 End
16 End
17 X = L୧, and Y = size (P)
18 Foreach (j ∈ P)
19 For (x = 1 to X)
20 Dሾx,yሿൌ	infinity;	//Auxiliary	XൈY	matrix	used	for	DP	
21 For	ሺz	ൌ	1	to	xሻ	
22 Dሾx,yሿൌminሺDሾx,yሿ,Dሾx‐1,y‐zሿ	costijሺzሻሻ	
23 Dሾx,yሿൌminሺDሾx,yሿ,	Dሾx‐1,yሿሻ	
24 End
25 End
26 Back-track to find the best assignment and update ߶’s

B. Local Search Method

The constructive nature of the proposed algorithm can
cause a situation in which some servers are not well utilized
although with the large number of VMs makes this less of a
concern. Regardless, to improve the results of the proposed
VM placement algorithm, a local search method is used.

To minimize the total energy consumption in the system,
all servers with utilization less than a threshold are examined.
This threshold can be specified by the cloud provider. To find
the under-utilized servers, utilization of a server is defined as
the maximum resource utilization in different resource
dimensions in the server, e.g. if ߶

 =0.5 and ߶
 =0.3, we

define the utilization of the server to be 50%.
To examine these under-utilized servers, each of them is

turned off one by one and total energy consumption is found
by placing their VMs on other active servers using the
proposed DP placement method. If the total cost of the new

placement is less than the previous total cost, the new
configuration is selected and the remaining under-utilized
servers are examined; otherwise the option of turning off that
server is rejected and other candidate servers are examined.

VI. SIMULATION RESULTS

To evaluate the effectiveness of the proposed VM
placement algorithm, a simulation framework is implemented.
Simulation setups, baseline heuristics and numerical results of
this implementation are presented in this section.

A. Simulation Setup

For simulation, model parameters are generated based on
the real world parameters. The number of server types is set to
8. For each server type, an arbitrary number of servers are
placed in datacenter. Processors in server types are selected
from a set of Intel processors (e.g. Atom and Xeon) [21] with
different number of cores, cache, power consumptions and
working frequencies. Active power consumptions for different
server types (excluding the processor power consumption) are
set uniformly between two to four times the power
consumption of their fully-utilized processor. Memory BW of
the servers is set based on the maximum memory BW of these
cores with a factor of 0.4. For example if the maximum
memory BW of a processor is 20 GB/s, the available memory
BW for this processor is set to 8 GB/s.

Processing resource requirement for each VM is selected
uniformly between 1 and 18 billion CPU cycles per second.
The memory BW requirements for clients are also selected
uniformly between 768MB/s and 4GB/s. Note that we limited
the CPU cycle requirement of each VM to the maximum
available CPU cycles in servers to be able to compare our
proposed approach with the previous VM placement solution
that are not able to create multiple VM copies automatically.
In contrast, EVRP algorithm is capable of generating a VM
placement solution as long as the memory BW requirement of
each VM is less than the maximum memory BW supported by
the available servers in the datacenter.

Upper bound on the number of copies for each VM is set
between 1 and 5 based on the value of the required processing
resources, e.g. if the processing requirement for a VM is equal
to maximum processing requirements, ܮ is equal to 5 and if
the value of processing requirement for a VM is less than ¼ of
the maximum value, ܮ is equal to one (no copy is allowed).

Each simulation is repeated at least 1000 times to generate
acceptable average results for each case.

B. Heuristics for Comparison

We implemented the min Power Parity (mPP) heuristic
[11] as one of the state of the art energy-aware VM placement
techniques. This heuristic is based on first fit decreasing
heuristic [20] for the bin-packing problem. The heuristic tries
to minimize the overall power consumed by the active servers
in datacenter servicing the VMs. Details of mPP can be found
in [11].

To show the effectiveness of our proposed approach for
placing multiple copies of VMs on servers, along with mPP, a
version of our algorithm in which every ܮ is set to one is also
considered. This prohibits the solution from using more than a

single VM per client. We denote this version of the algorithm
with the name of baseline method in the figures. Moreover, to
show the effect of distributed resource assignment and
constant power cost for active servers, we implement a
procedure to find the lower bound on the total energy cost
with relaxation of these obstacles. To calculate this lower
bound, for each VM, total energy cost (ܿ

/ܥ
൫ ܲ

 ܲ
൯ ܶ) of

serving that VM on each server is calculated and the smallest
energy cost is selected. Summation of these energy costs
generates a lower bound on the total energy cost.

C. Numerical Results

Normalized total energy cost in the system using the
EVRP algorithm, baseline method, and mPP algorithm is
presented in Figure 3.

As can be seen, EVRP reduces the total energy cost of VM
placement solution by 16 to 20% with respect to mPP
algorithm. Performance of the baseline algorithm which is
based on assigning the VMs using DP method is 1 to 4%
worse than mPP method because baseline method does not
place the VM on the server with least resource availability and
instead choose the host server randomly in a selected server
type.

TABLE II. PERFORMANCE OF THE PROPOSED SOLUTION W.R.T. LOWER

BOUND COST AND AVERAGE NUMBER OF VM COPIES

of original VMs
Performance w.r.t

Lower bound
average # of VM

copies
200 1.13 1.33
500 1.14 1.32

1000 1.10 1.29
2000 1.14 1.31
4000 1.16 1.30
5000 1.10 1.35

Table II shows the relative performance of EVRP with
respect to the derived lower bound on the total energy cost.
There are two reasons behind the difference between the result
of EVRP and the lower bound: i) imperfection of the
algorithm, and ii) constant power consumption of the servers
(independent from their utilization) and effect of the
distributed resources in the datacenter. Considering the
utilization of the servers, we can say that even with 90%
utilization, the total energy cost of the VM placement solution
is greater than the lower bound by ~10%. The average number
of VM copies on the final solution of the EVRP is also shown
in this table. This value is very small with respect to the

average ܮ for VMs which is 3. This shows that the EVRP
does not make more than one copy of a VM unless it is
beneficial for the energy cost of the system.

The effect of different ܮ values is reported in Figure 4. In
this figure the normalized total energy cost of the VM
placement solution by using EVRP for different ܮ values are
shown. As can be seen, the difference between EVRP and a
version of EVRP that restricts the number of VM copies to 2 is
4% (average). This shows that the idea of using multiple
copies of VM is effective even if the number of these copies is
limited to 2 for big VMs. This difference for a version of
EVRP that considers at most 10 copies of VM for a VM with
the biggest CPU cycle requirement is 3% (average). Based on
our previous work [19], we expect that using more than a
limited number of copies of a VM affect the QoS of the users
even if the memory BW of each copy is equal to the memory
BW of the original VM. More precisely, each copy of the VM
should be able to service its share of requests and satisfy the
performance requirements (response time or throughput
constraint). Decreasing the CPU cycle of each VM copy limits
the VM copy to a certain percentage of the requests until a
case that a VM copy cannot even satisfy the performance
constraint for one request at a time. This issue can be
addressed by considering a lower bound on the CPU cycle
requirement of each VM copy.

Figure 5 shows the average run-time of the EVRP,
baseline, and mPP methods for different number of VMs. Note
that VM placement algorithm is called only a few times in
each charge cycle (one hour in Amazon EC2 service [22]), e.g.
2-3 times per hour. Also to reduce the time complexity of the
EVRP algorithm in case of bigger number of VMs, we can use
a partitioning algorithm to assign a set of VMs to a cluster and
then apply EVRP in each cluster in parallel.

Figure 6 shows the average utilization of the servers for
different ܲ/ܲ and for different VM placement methods. As
can be seen, the utilization level increases when ܲ/ܲ
decreases. Smaller value for ܲ/ܲ means that the server is
less energy-proportional. For these cases, if a server is turned
ON, we will try to utilize it as much as possible. This behavior
is seen for all of these algorithms. Moreover, it can be seen
that increasing maximum ܮ, increases the utilization level in
average. This behavior is also expected because by increasing
maximum ܮ, we have more chance to get smaller VMs to fill
the servers and avoid under-utilized servers.

Figure 3. Normalized total energy cost of the system Figure 4. Normalized total energy cost of the VM placement solution using for
different ܮ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

200 500 1000 2000 4000 5000

N
o
rm

al
iz
ed

 to
ta
l e
n
er
gy
 c
o
st

Number of original VMs

EVRP Baseline mPP

0

0.2

0.4

0.6

0.8

1

1.2

200 500 1000 2000 4000 5000

N
o
rm

al
iz
ed

 to
ta
l e
n
er
gy
 c
o
st

Number of original VMs

EVRP EVRP‐10 EVRP‐2

VII. CONCLUSION

We presented an approach to generate multiple copies of
VMs without sacrificing the QoS. An algorithm based on
dynamic programming and local search was provided to
determine the number of VM copies, and then place them on
the servers to minimize the total energy cost in the cloud
computing system. This approach reduces the energy cost by
up to 20% with respect to prior VM placement techniques.

The proposed solution provides a flexible method to
increase the energy efficiency of the cloud computing system
or even increase the resource availability in the datacenter.
Cloud provider can decide how to service VMs with big
processing resource requirements and how to distribute their
requests among the servers to maximize the energy efficiency.

To guarantee QoS for each VM, we only considered fixed
memory BW requirement and we added a limitation on the
number of VM copies. For future work, it is possible to
consider that if a VM is copied, we should increase the total
processing requirement by a factor. Moreover, other resources
such as communication (network I/O) resources and secondary
storage can be considered in this decision making. Moreover,
different methods should be provisioned for cooperation and
consistency between different VM copies and failure recovery.

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The Case for Energy-Proportional
Computing,” IEEE Computer, 2007.

[2] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, Morgan
& Claypool Publishers, 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M.
Zaharia, “A view of cloud computing,” Commun ACM 53(4), pp.
50-58.

[4] R. Buyya, “Market-oriented cloud computing: Vision, hype, and
reality of delivering computing as the 5th utility,” in the proc. of the
9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, CCGRID 2009, May 18, 2009.

[5] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang and X. Zhu,
“No "power" struggles: Coordinated multi-level power management
for the datacenter,” ACM SIGPLAN Notices 43(3), pp. 48-59. 2008.

[6] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing,” In proc. of the 2008 conference on Power
aware computing and systems (HotPower'08). 2008.

[7] X. Wang and Y. Wang, “Co-con: Coordinated control of power and
application performance for virtualized server clusters,” in proc. of

the 17th IEEE International Workshop on Quality of Service
(IWQoS). 2009.

[8] C. Tang, M. Steinder, M. Spreitzer and G. Pacifici, “A scalable
application placement controller for enterprise datacenters,” In proc.
of the 16th International World Wide Web Conference, WWW2007,
May 2007.

[9] F. Hermenier, X. Lorca, J. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” In proc. of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments (VEE '09).

[10] N. Bobroff, A. Kochut, K. Beaty, "Dynamic Placement of Virtual
Machines for Managing SLA Violations," In proc. of the 10th
IFIP/IEEE International Symposium on Integrated Network
Management, 2007. IM '07, May 2007.

[11] A. Verrna, P. Ahuja and A. Neogi, “pMapper: Power and migration
cost aware application placement in virtualized systems,” In proc. of
the 9th ACM/IFIP/USENIX International Middleware Conference.
2008.

[12] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing,” In the proc. of the workshop on Power Aware
Computing and Systems (HotPower ’08), December 2008.

[13] Z. Liu, M. S. Squillante and J. L. Wolf, “On maximizing service-
level-agreement profits,” In proc. of the 3rd ACM Conference on E-
Commerce, 2001.

[14] H. Goudarzi, M. Ghasemazar and M. Pedram, “SLA-based
Optimization of Power and Migration Cost in Cloud Computing,” in
proc. of the 12th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID 2012, May 2012.

[15] L. Zhang and D. Ardagna, “SLA based profit optimization in
autonomic computing systems,” In proc. of the 2nd Int. Conf. on
Service Oriented Computing, November 2004.

[16] D. Ardagna, B. Panicucci, M. Trubian, L. Zhang, “Energy-Aware
Autonomic Resource Allocation in Multi-Tier Virtualized
Environments,” IEEE Transactions on Services Computing, 2010.

[17] A. Chandra, W. Gongt and P. Shenoy, “Dynamic resource allocation
for shared clusters using online measurements,” in the proc. of the
ACM SIGMETRICS 2003.

[18] H. Goudarzi and M. Pedram, “Maximizing profit in the cloud
computing system via resource allocation,” in proc. of the
international workhop on Datacenter Performance, June 2011.

[19] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-based
resource allocation for multi-tier cloud computing systems,” in proc.
of the 4th IEEE International confernece on cloud computing, July
2011.

[20] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. , Wiley, 1990.

[21] http://ark.intel.com/
[22] http://aws.amazon.com/ec2/pricing/

Figure 5. Run-time of EVRP for different number of VMs on 2.4GHZ
E6600 server with 3GB of RAM from Intel

Figure 6. Ratio of expected percentage of the response time constraint’s
violation to the maximum allowed percentage of violation

0

20

40

60

80

100

120

140

160

180

200 500 1000 2000 4000 5000

A
lg
o
ri
th
m
 R
u
n
‐t
im

e
 (
s)

Number of original VMs

EVRP

EVRP‐10

EVRP‐2

Baseline

mPP

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.7

0.75

0.8

0.85

0.9

0.95

1

Pp/P0

A
v

e
ra

g
e

 u
ti

li
za

ti
o

n

EVRP
EVRP-10
EVRP-2
Baseline
mPP

