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ABSTRACT – By utilizing Virtual Machines (VM) and 
doing server consolidation in a datacenter, a cloud 
provider can reduce the total energy consumption for 
servicing his clients with little performance degradation. In 
particular, the cloud provider can take advantage of 
dissimilar workloads and by assigning these workloads to 
the same server, can utilize fewer active servers to service 
his clients. Placing multiple copies of a VM on different 
servers and distributing the incoming requests among 
these VM copies can reduce the resource requirement for 
each VM copy and help the cloud provider utilize the 
servers more efficiently. In this paper, the problem of 
energy-efficient VM placement in a cloud computing 
system is solved. Precisely, we present an approach that 
first creates multiple copies of VMs and then uses dynamic 
programming and local search to place these copies on the 
physical servers. Simulation results show that the proposed 
algorithm reduces the total energy consumption by up to 
20% with respect to previous work.1 

I. INTRODUCTION 

Demand for computing power has been increasing due to 
the penetration of information technologies in our daily 
interactions with the world both at personal and public levels, 
encompassing business, commerce, education, manufacturing, 
and communication services. At the personal level, the wide 
scale presence of online banking, e-commerce, SaaS (Software 
as a Service), social networking and so on produce workloads 
of great diversity and enormous scale. At the same time 
computing and information processing requirements of various 
public organizations and private corporations have also been 
increasing rapidly. Examples include digital services and 
functions required by various industrial sectors, ranging from 
manufacturing to housing, from transportation to banking. 
Such a dramatic increase in the computing demand requires a 
scalable and dependable information technology (IT) 
infrastructure comprising of servers, storage, network 
bandwidth, physical infrastructure, Electrical Grid, IT 
personnel and billions of dollars in capital expenditure and 
operational cost  to name a few.  

Virtualization technology makes the independence of 
applications and servers feasible. Nowadays, computing 
systems heavily rely on this technology. Virtualization 
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technology provides a new way to improve the power 
efficiency of the datacenters: (server) consolidation, which 
enables the assignment of multiple virtual machines (VMs) to 
a single physical server. By this action, some of the available 
servers can be turned off or put into some deep sleep state, 
thereby, lowering power consumption of the computing 
system. The technique works because modern servers tend to 
consume 50% or so of their peak power in idle state (this 
effect is known as the non-energy-proportionality of modern 
servers [1].) Consolidation involves performance-power 
tradeoff. More precisely, if workloads are consolidated on 
servers, performance of the consolidated VMs may decrease 
because of reduction of available physical resources (CPU, 
memory, I/O bandwidth) although the overall power efficiency 
improves because fewer servers are needed to service the 
VMs.  

Low utilization of servers in a datacenter is one of the most 
important factors responsible for low power efficiency of 
datacenters. For example, the average utilization of servers in 
a Google datacenter was reported to be 30% [2]. Due to the 
non-energy-proportional nature of the current servers, it is 
prudent from an energy efficiency viewpoint to have as few 
servers as possible turned on, with each ON server being 
highly utilized. Hence, there is a strong justification for server 
consolidation in current enterprise computing centers.  

The IT infrastructure provided by the datacenter 
owners/operators must meet various Service Level 
Agreements (SLAs) established with the clients. The SLAs 
may be resource related (e.g., amount of computing power, 
memory/storage space, network bandwidth), performance 
related (e.g., service time or throughput), or even quality of 
service related (24-7 availability, data security, percentage of 
dropped requests.) To minimize the energy consumption using 
consolidation, these SLA constraints should be considered.  

A datacenter comprises of thousands to tens of thousands 
of server machines, working in tandem to provide services to 
the clients, see for example reference [1], [3] and [4]. In such a 
large computing system, in spite of non-energy-proportional 
characteristics of current server machines, energy efficiency 
can be maximized through system-wide resource allocation 
and server consolidation. The problem of resource 
provisioning is challenging due to the diversity that is present 
in the hosted client applications. For example: some client 
applications may be computation-intensive while others may 
be memory-intensive, some applications may run well together 
while others do not, and so on. 



The energy cost and admission control policy in a cloud 
computing system are affected by its power and VM 
management policies. Power management techniques [3]-[7] 
control the average and peak power in a distributed or 
centralized fashion in the datacenters VM management 
techniques [8]-[11] control the VM placement on the physical 
servers as well as VM migration from one server to next. In 
this paper, we focus on the VM placement to minimize the 
energy cost in the cloud computing system. 

Generating multiple copies of a VM and placing them on 
different servers is one of the basic ways to increase the 
service reliability. In this approach, only the original copy of 
the VM handles the requests while the other copies are idle. In 
this paper, we propose to exploit all of these VM copies for 
servicing the requests. Under this new scenario, resource 
provided to each copy of the VM should satisfy SLA 
requirements and the set of distributed VMs should be able to 
service all of the incoming requests. For this reason, memory 
Bandwidth (BW) provided for each copy of the VM should be 
the same as the original VM and the total CPU cycles 
provided for all of the VM copies should be equal to those 
provided to the original copy of the VM. Increasing the 
number of VM copies increases the average utilization level of 
servers because by increasing the number of VM copies, we 
have more opportunity to use smaller VMs to fully utilize the 
servers, and thereby, avoid having under-utilized servers. 
Using this approach and an effective VM placement 
algorithm, which determines the number of VMs and places 
them on the physical machines, the energy cost of the system 
can be reduced by up to 20% (cf. Section VI.) 

The proposed VM placement algorithm is based on the 
dynamic programming and local search methods. The dynamic 
programming method determines the number of copies for 
each VM and places them on servers whereas the local search 
tries to minimize the energy cost by turning off the under-
utilized servers. 

The remainder of this paper is organized as follows. 
Related work is presented in the next section. The system 
model and problem formulation are given in section III and 
IV. The proposed algorithm is presented in section V. 
Simulation results are provided in the section VI and the 
conclusions are stated in the last section. 

II. RELATED WORK 

Distributed resource allocation is one of the most 
challenging problems in the resource management field. This 
problem has attracted a lot of attention from the research 
community in the last few years. In the following we provide a 
review of most relevant prior work. 

Srikantaiah et al. [12] presented an energy-aware 
consolidation technique to decrease the total energy 
consumption of a cloud computing system. The authors 
empirically modeled the energy consumption of servers as a 
function of CPU and disk utilization. Next, they described a 
simple heuristic to consolidate the processing works in the 
cloud computing system. Performance of the solution is 
evaluated only for very small input size. 

A VM placement heuristic to maximize the number of 
serviced applications, minimize the migration cost, and 
balance the load in physical machines is presented in [8]. The 
main focus of this work is on the scalability of the problem but 
the problem of assigning VMs on physical servers when the 
operational cost minimization is the objective is not 
investigated. 

A consolidation manager for homogenous clusters called 
Entropy is proposed in reference [9]. This consolidation 
manager considers the memory and CPU requirements of the 
VMs and migration overhead in the system. The status of each 
VM (being active or inactive) can change in time and this 
signifies the importance of having dynamic consolidation 
manager. The authors proposed a dynamic consolidation based 
on constraint programming methods considering the 
performance overhead of migrating (active and inactive) VMs 
to different servers.  

Bobroff et al. [10] proposed methods for classification and 
forecasting of VM workload. It is shown that applying 
dynamic VM migration is most beneficiary in case of certain 
workload characteristics. Based on these methods, they 
proposed a dynamic VM management algorithm to minimize 
the total power consumption with a constraint on SLA of each 
VM or minimize the SLA violation rates considering a fixed 
set of active servers. 

Power and migration cost aware application placement in 
virtualized systems is proposed in [11]. Authors present a 
power-aware VM placement controller in a system with 
heterogeneous server clusters and virtual machines. pMapper 
architecture and placement algorithms to solve the problem of 
minimizing power subject to a fixed performance requirement 
are investigated. The proposed solution is presented based on 
assumption of predetermined performance level for VMs. The 
proposed algorithms for VM placement, which are based on 
bin packing heuristics, do not consider multiple copies of VM 
and only consider one dimension of resource in the servers. 

Liu et al. [13] described a SLA-based profit optimization 
problem in electronic commerce hosting datacenters. A fixed 
set of servers are assumed to be active and application 
placement on the servers are done to maximize the total SLA 
profit. SLA in this work is modeled as a response time 
constraint and less than a portion (e.g. 2%) of request’s 
response time can violate that constraint. This kind of SLA are 
used in [14] to optimize the energy consumption and 
migration cost in the cloud computing system.  

Zhang et al. [15] and Ardagna et al. [16] present heuristics 
to allocate resources in a virtualized environment to maximize 
the profit and minimize the energy cost in the system while 
meeting the SLA. The authors used a complex model for 
energy calculation to increase the accuracy. They solved the 
problem by generating a feasible solution and improving the 
quality of the solution by local search. The presented problem 
considers soft SLA contracts in which client pays the cloud 
provider based on the average response time provided to its 
requests. These kind of SLAs are considered in different 
works such as [17]-[19]. The VM placement problem with 
constant resource requirements for each VM is not considered 
in these works. 



Our paper considers the resource management problem in 
a cloud computing system. Key features of our formulation 
and proposed solution are that we consider heterogeneous 
servers in the system and use a two dimensional model of the 
resource usage accounting for both computational and 
memory BW. We propose multiple copies of VMs to be active 
in each time to reduce the resource requirement for each copy 
of VM and help to increase the energy efficiency of the 
consolidation and VM placement algorithm. A novel approach 
based on dynamic programming and local search is proposed 
to determine the number of copies for each VM and place 
them on servers to minimize the total cost in the system. No 
previous work considers all these aspects together when 
addressing the cloud level resource management problem. 

III. SYSTEM MODEL 

In this section, detail of the assumptions and system 
configuration for the VM placement problem are presented.  

To increase the paper readability, Table I presents key 
symbols and definitions used in this paper. Each client is 
identified by a unique id, denoted by index i. Each server in 
the cloud computing system is similarly identified by a unique 
id, denoted by index j. 

Table I. NOTATION AND DEFINITIONS 

Symbol name Definition 

ܿ
, ܿ

 
Required memory BW and total processing 
capacity for the ith client 

  Max. # of servers allowed to serve the ith clientܮ
  Set of servers of type kݏ

ܥ
, ܥ

 
Total CPU cycle and memory BW of the jth 
server, shorthand notation for ܥௌೖ

 and ܥௌೖ
 

ܲ
 Constant power consumption of the jth server 

operation in the active mode. Same as ௌܲೖ
  

ܲ
୮	 

 

Power of operating the jth server which is 
proportional to the utilization of processing 
resources,  shorthand notation for ௌܲೖ

  

Te Duration of a decision epoch in seconds 

  A pseudo-Boolean integer to determine if the jthݔ
server is ON (1) or OFF (0) 

  A pseudo-Boolean integer to determine if the ithݕ
VM is assigned to the jth server (1) or not (0) 

߶
 , ߶

	 Portion of the processing and memory BW 
resources of the jth server that is allocated to the ith 
client 

߶
, ߶

	 Portion of the processing and memory BW 
resources of the jth server that is allocated to any 
client 

 

A. Cloud Computing System 

In the following paragraphs, we describe the type of the 
datacenter that we have assumed as well as our observations 
and key assumptions about where the performance bottlenecks 
are in the system and how we can account for the energy cost 
associated with a client’s VM running in the datacenter.  

A datacenter comprises of a number of potentially 
heterogeneous servers chosen from a set of known and well-
characterized server types. In particular, servers of a given 

type are modeled by their processing capacity or CPU cycles 
∗ܥ)

) and memory BW (ܥ∗) as well as their energy cost, which 
is directly related to their average power consumption. We 
assume that local (or networked) secondary storage (disc) is 
not a system bottleneck.  

The operational cost of the system is assumed to be the 
total energy cost of serving all clients’ requests. The energy 
cost is calculated as the server power consumption multiplied 
by the duration of the epoch in seconds ( ܶ). The power of a 
server is modeled as a constant power cost ( ∗ܲ

) plus another 
variable power cost, which is linearly related to the utilization 
of the server (with slope of ∗ܲ

 ). Note that power cost of 
communication resources and the computer room air 
conditioning (CRAC) units are amortized over all servers and 
communication/networking gear in the datacenter, and are thus 
assumed to be relatively independent of the clients’ 
workloads. Precisely, these costs are not included in the 
equation for datacenter power cost.  

B. Client and Virtual Machines 

Clients in the cloud computing system are represented with 
VM. By using workload prediction with consideration of the 
SLA, the amount of resources that each client needs in order to 
avoid SLA violation can be determined. These VMs are 
assumed to generate processing requests during the considered 
epoch. This assumption is valid for clients corresponding to 
online services. In contrast, this assumption is not applicable 
for batch applications. 

Each VM may be copied onto different servers (i.e., 
requests generated by a single client can be assigned to more 
than one server). This request distribution can decrease the 
quality of the service if the number of servers that process the 
client’s requests becomes large [15]. Therefore, in this paper, 
we impose an upper bound on this number; ܮ  limits the 
maximum number of copies of the VM in datacenter (this limit 
is set to 1 if the VM cannot have multiple copies). If multiple 
copies of a VM are placed on different servers, the following 
constraints should be satisfied: 
∑ ߶

ܥ


 ൌ ܿ
 (1) 

߶
ݕܥ

 ൌ ܿ
 (2) 

where ߶
  and 	߶

  denote the portion of the jth server CPU 
cycles and memory BW allocated to the VM related to the ith 
client. Moreover, ݕ is a pseudo-Boolean integer to determine 
if a VM related to client i is assigned to the jth server or not. 
Constraint (1) enforces the summation of the reserved CPU 
cycles on the assigned servers to be equal to the required CPU 
cycles for client i. Constraint (2) enforces the provided 
memory BW on assigned servers to be equal to the required 
memory BW for the original VM. This constraint enforces the 
cloud provider not to sacrifice the Quality of Service (QoS) for 
its clients. An example of multiple copies of a VM is shown in 
Figure 1. In this figure, the difference between heights of the 
horizontal bars shows the memory BW requirement while the 
difference between widths of the vertical lines show the CPU 
cycle requirement of each VM. 



C. VM Management System 

Datacenter management is responsible for admitting the 
VMs into the datacenter, servicing them to satisfy SLA 
requirements, and minimizing the energy cost of the 
datacenter. In this paper, we focus on the VM controller 
(VMC). The VMC is responsible for determining the resource 
requirements of the VMs and placing them on servers. 
Moreover, to mimic the workload changes, the VMC should 
perform VM migration. The VMC performs these tasks based 
on two different optimization procedures: semi-static 
optimization and dynamic optimization. Semi-static 
optimization procedure is performed periodically (at periods 
of Te), whereas dynamic optimization procedure is performed 
whenever it is needed.   

In the semi-static optimization procedure, the VMC 
considers the active set of VMs, previous assignment solution, 
feedbacks generated from power, thermal and performance 
sensors, and workload prediction to generate the best VM 
placement solution for the next epoch. Period of performing 
semi-static optimization depends on the type and size of the 
datacenter and workload specifications. In the dynamic 
optimization procedure, the VMC finds a temporary VM 
placement solution by migrating, creating or removing some 
number of VMs to respond to performance, power budget, or 
critical temperature violation.  

In this paper, we focus on the semi-static optimization 
procedure of the VMC. In this procedure, resource 
requirements of VMs are assumed to be determined based on 
the SLA specification and workload estimation for the next 
decision epoch. The duration of the decision epoch is long 
enough for us to neglect the task migration penalty (less than 
100ms for live migration [11]) with respect to the gain of the 
global optimization. Therefore, the energy cost optimization is 
performed without any knowledge of the state of the cloud 
computing system in the previous decision epoch. However, 
the nature of the proposed solution allows the system to 
account for the migration cost if this becomes an important 
consideration. 

The role of the semi-static optimization procedure in the 
VMC is to determine whether to create multiple copies of 
VMs on different servers and assign VMs to servers. 

Considering fixed payments by the clients for the cloud 
services they receive, the goal of this optimization is to 
minimize the energy cost of the active servers in datacenter. 
An exemplary solution for assigning six VMs with different 
resource requirements on two heterogeneous servers is 
depicted in Figure 2. 

IV. PROBLEM FORMULATION 

In this paper, a VM placement problem is considered with 
the objective of minimizing the total energy consumption in a 
decision epoch while servicing all VMs in the cloud 
computing system. 

The exact formulation of the aforesaid problem (called 
MERA for Multi-dimensional Energy-efficient Resource 
Allocation) is provided below (cf. Table I.) 

݊݅ܯ ܶ ݔ ൬ ܲ
  ܲ

 ߶



൰


 (3) 

subject to: 
߶
 ൌ ∑ ߶


  1  ∀݆  (4) 

߶
 ൌ ∑ ߶


  1  ∀݆  (5) 

∑ ܥ
߶


 ൌ ܿ

  ∀݅, ݆  (6) 

ݕ  ߶
 , ݕ  1  ߶

 െ ,݅∀ 		ߝ ݆  (7) 

߶
ݕܥ

 ൌ ܿ
  ∀݅, ݆  (8) 

∑ ݕ     ∀݅  (9)ܮ
ݔ  ∑ ߶


   ∀݆  (10) 

ݕ ∈ ሼ0,1ሽ, ݔ ∈ ሼ0,1ሽ, ߶
  0,	߶

  0 ∀݅, ݆  (11) 

where ߝ  is a very small positive value, and, ݔ  is a pseudo-
Boolean integer variable to determine if the jth server is ON 
  .(=0ݔ) or OFF (=1ݔ)

The objective function is the summation of the energy cost 
of the ON servers based on a fixed power factor and a variable 
power term linearly related to the server utilization. In this 
problem, ݔ, ݕ and ߶

  are the optimization variables.  
The constraints capture the limits on the number of 

available servers and clients. In particular, inequality 
constraints (4) and (5) represent the limit on the utilization of 
the processing and memory BW in the jth server, respectively. 
Constraint (6) ensures that required processing capacity for 
each VM is provided. Constraint (7) generates a pseudo-

Figure 1. An example of multiple copies of a VM Figure 2. An exemplary solution for assigning six heterogeneous VMs on two 
heterogeneous Servers 



Boolean parameter that determines if a copy of a VM is 
assigned to a server (ݕ ൌ 1) or not (ݕ ൌ 0). Constraint (8) 
ensures the memory BW needs of a VM assigned to a server is 
provided and constraint (9) ensures that the number of copies 
of a VM does not exceed the maximum possible number of 
copies. Constraint (10) generates the pseudo-Boolean 
parameter related to the status of each server. Constraint (11) 
specifies the domains of optimization variables. 

Theorem I: Generalized Assignment Problem (GAP) [20] 
can be reduced to the MERA problem. 

Proof: Consider a version of the MERA problem in which 
ݐݏܿ

 is equal to zero for every server and ܮ is equal to one 
for every VM. In this problem, assigning each VM (only one 
copy) to each server has different cost and each server has two 
dimensional resources that can be assigned to VMs. So, we 
can solve any two-dimensional GAP problem using MERA 
problem’s solution in a special case.  

Theorem II: Bin Packing Problem (BPP) [20] can be 
reduced to MERA problem. 

Proof: Consider a version of the MERA problem in which 
ݐݏܿ

 is equal to zero for every server and ܮ is equal to one 
for every VM. The objective in this problem is to minimize the 
number (or a weighted summation) of the ON servers 
considering the two-dimensional resource availabilities on 
each server and resource requirement of each VM. So, we can 
solve any two-dimensional BPP problem using MERA 
problem’s solution in a special case.  

Theorem I and II shows that MERA is a combination of 
two NP-hard problems. Considering either theorem I or II, 
MERA is at least as hard as a known NP-hard problem [20] 
and thus it is an NP-hard problem. Indeed,	 even	 deciding 
whether a feasible solution exists for this problem, does not 
have an efficient solution. In this paper, we consider a case in 
which the required resources for VMs are smaller than the 
available resources in the datacenter. This means we consider 
energy minimization with a fixed set of VMs instead of 
maximizing the number (or the total profit) of VMs that are 
served in the datacenter. So, we assume that a simple greedy 
algorithm (similar to First Fit Decreasing (FFD) heuristic [20]) 
will find a feasible solution to MERA for the specified inputs 
in the problem definitions. Another important observation 
about this problem is that the numbers of clients and servers in 
this problem are very large; therefore, a critical requirement 
for any proposed heuristic should be its scalability. 

Different versions of this problem are considered in the 
literature. Some work consider this resource allocation 
problem along with performance modeling by using the 
queuing theory while other work considers a fixed size VM 
placement problem. In most of the previous work, simple 
solutions based on known heuristics for well-known problems 
such as Knapsack problem, bin packing, and generalized 
assignment problem are proposed. In this work we examine 
the effect of multiple active copies of VMs and an effective 
algorithm to reduce the energy consumption in the cloud 
computing system is proposed. 

V. PROPOSED ALGORITHM 

In this section, a heuristic for solving the MERA problem 
is presented. An algorithm based on Dynamic Programming 
(DP) is presented to determine the number of copies of each 
VM and assign these VMs to the servers. This decision 
determines which servers are active for the next epoch and the 
utilization of those servers. The goal of the algorithm is to 
minimize the total energy cost of the active servers. To 
improve the results, a local search is considered to minimize 
the number of active servers as much as possible. 

In the beginning of the VM placement, clients are ordered 
based on their processing requirement. Based on this ordering, 
the optimal numbers of copies of the VMs are determined and 
these copies are placed on servers using dynamic 
programming. In the local search method, servers are turned 
off based on their utilization and VMs are placed on the rest of 
the servers (if possible) to minimize the energy consumption 
as much as possible. 

The details of the Energy-efficient VM Replication and 
Placement algorithm or EVRP for short are presented below. 

A. Energy Efficient VM Placement Algoritmh 

At the beginning of the algorithm, ߶
  and ߶

  for each 
server are set to zero. A constructive approach is used to place 
VMs on the servers. VMs are sorted based on their processing 
requirements in a non-increasing order. For each VM, a 
method based on DP is used to determine the number of 
copies placed on different servers.  

Energy cost of assigning a copy of the ith VM to a server 
from server type k is calculated based on equation (12). 
ܿሺߙሻ ൌ ߶


ܲ
  ܲ

ܿ
/ܥ

 (12) 
where ߙ (between 1 and ܮ) denotes the size of the assigned 
VM to the server. ߶

  is calculated from equation (13). 

߶
 ൌ ሺܿߙ

 ⁄ܮ ሻ/ܥ
   (13) 

For example, in case of ܮ=4 if half of the CPU cycle 
requirement of the VM is provided by a copy of the VM, ߙ 
and ߶

  is equal to 2 and 0.5ܿ
/ܥ

. 
The first term in (12) is the cost related to the CPU 

utilization of the server. The second term is the replacement of 
the constant energy cost of the active server.  

For each VM, equation (12) is calculated for each server 
type and different values of ߙ (between 1 and ܮ). Moreover, 
for each server type, L୧ active servers and L୧ inactive servers 
that can service at least the smallest copy of the VM are 
selected as candidate hosts.  For active servers, the value of 
cost is decremented by ߝ to select them over inactive servers in 
an equal energy scenario. 

After selecting active and inactive candidate servers for 
each server type and calculating cost for each possible 
assignment, the problem is reduced to (14). 
݊݅ܯ ∑ ݕ

ఈܿሺߙሻ∈   (14) 
subject to: 
∑ ݕߙ

ఈ
∈ ൌ    (15)ܮ

where ݕ
ఈ  denotes the assignment parameter for jth server with 

VM with size of ߙ (1 if assigned and 0 otherwise). Moreover, 
ܲ denotes the set of candidate servers for this assignment. 



DP is used to solve this problem and find the best 
assignment decision. In this DP method, candidate servers 
may be processed in any order. The method examines all the 
possible VM placement solution efficiently without 
calculating every possible solution in a brute-force manner. 
Using this method, the optimal solution can be found. 

Complexity of this DP method is ܱሺ2ܮ
ଶܭሻ , where K 

denotes the number of server types that are considered for this 
assignment. After finding the assignment solution, ߶

 and ߶
 

of the selected servers are updated. Then, the next VM is 
chosen and this procedure is repeated until all VMs are placed. 

Algorithm 1 shows the pseudo code for this assignment 
solution for each VM.  
Algorithm 1: Energy Efficient VM Placement 

Inputs: C୨
୫, C୨

୮, P୨
, P୨

୮, c୧
୫, c୧

୮, L୧ 
Outputs: ϕ୧୨

୮, ϕ୧୨
୫ (i is constant in this algorithm) 

 
1 P={} 
2 For (k = 1 to number of server types) 
3 ON=0; OFF=0; 
4 For (α ൌ 1 to L୧) 
5  ϕ୧୨

୮ ൌ ሺαc୧
୮ L୧⁄ ሻ/C୨

୮ 
6 c୧୩ሺαሻ ൌ ϕ୧୨

୮P୨
୮  P୨

c୧
୫/C୨

୫	 
7 End 
8 J ൌ ሼj ∈ s୩|ሺ1 െ ϕ୨

୫ሻ  c୧
୫/C୨

୫} 
9 J ൌ ሼj ∈ s୩|ϕ୨

୮ ൌ 0, ሺ1 െ ϕ୨
୫ሻ  c୧

୫/C୨
୫ሽ 

10 Foreach (j ∈ s୩) 
11 If (j ∈ J& ON൏ L୧)              		 
12 P ൌ P ∪ ሼjሽ , ON++,  cost୧୨ሺαሻ ൌ c୧୩ሺαሻ െ ε 
13 Else if (j ∈ J& OFF൏ L୧)  
14 P ൌ P ∪ ሼjሽ , OFF++, cost୧୨ሺαሻ ൌ c୧୩ሺαሻ 
15 End 
16 End 
17 X = L୧, and Y = size (P) 
18 Foreach ( j ∈ P) 
19 For  (x = 1 to X) 
20  Dሾx,yሿൌ	infinity;	//Auxiliary	XൈY	matrix	used	for	DP	
21 For	ሺz	ൌ	1	to	xሻ	
22 Dሾx,yሿൌminሺDሾx,yሿ,Dሾx‐1,y‐zሿ	costijሺzሻሻ	
23 Dሾx,yሿൌminሺDሾx,yሿ,	Dሾx‐1,yሿሻ	
24 End 
25 End 
26 Back-track to find the best assignment and update ߶’s 

B. Local Search Method 

The constructive nature of the proposed algorithm can 
cause a situation in which some servers are not well utilized 
although with the large number of VMs makes this less of a 
concern. Regardless, to improve the results of the proposed 
VM placement algorithm, a local search method is used.  

To minimize the total energy consumption in the system, 
all servers with utilization less than a threshold are examined. 
This threshold can be specified by the cloud provider. To find 
the under-utilized servers, utilization of a server is defined as 
the maximum resource utilization in different resource 
dimensions in the server, e.g. if ߶

 =0.5 and ߶
 =0.3, we 

define the utilization of the server to be 50%.  
To examine these under-utilized servers, each of them is 

turned off one by one and total energy consumption is found 
by placing their VMs on other active servers using the 
proposed DP placement method. If the total cost of the new 

placement is less than the previous total cost, the new 
configuration is selected and the remaining under-utilized 
servers are examined; otherwise the option of turning off that 
server is rejected and other candidate servers are examined. 

VI. SIMULATION RESULTS 

To evaluate the effectiveness of the proposed VM 
placement algorithm, a simulation framework is implemented. 
Simulation setups, baseline heuristics and numerical results of 
this implementation are presented in this section. 

A. Simulation Setup 

For simulation, model parameters are generated based on 
the real world parameters. The number of server types is set to 
8. For each server type, an arbitrary number of servers are 
placed in datacenter. Processors in server types are selected 
from a set of Intel processors (e.g. Atom and Xeon) [21] with 
different number of cores, cache, power consumptions and 
working frequencies. Active power consumptions for different 
server types (excluding the processor power consumption) are 
set uniformly between two to four times the power 
consumption of their fully-utilized processor. Memory BW of 
the servers is set based on the maximum memory BW of these 
cores with a factor of 0.4. For example if the maximum 
memory BW of a processor is 20 GB/s, the available memory 
BW for this processor is set to 8 GB/s. 

Processing resource requirement for each VM is selected 
uniformly between 1 and 18 billion CPU cycles per second. 
The memory BW requirements for clients are also selected 
uniformly between 768MB/s and 4GB/s. Note that we limited 
the CPU cycle requirement of each VM to the maximum 
available CPU cycles in servers to be able to compare our 
proposed approach with the previous VM placement solution 
that are not able to create multiple VM copies automatically. 
In contrast, EVRP algorithm is capable of generating a VM 
placement solution as long as the memory BW requirement of 
each VM is less than the maximum memory BW supported by 
the available servers in the datacenter. 

Upper bound on the number of copies for each VM is set 
between 1 and 5 based on the value of the required processing 
resources, e.g. if the processing requirement for a VM is equal 
to maximum processing requirements, ܮ is equal to 5 and if 
the value of processing requirement for a VM is less than ¼ of 
the maximum value, ܮ is equal to one (no copy is allowed). 

Each simulation is repeated at least 1000 times to generate 
acceptable average results for each case.  

B. Heuristics for Comparison 

We implemented the min Power Parity (mPP) heuristic 
[11] as one of the state of the art energy-aware VM placement 
techniques. This heuristic is based on first fit decreasing 
heuristic [20] for the bin-packing problem. The heuristic tries 
to minimize the overall power consumed by the active servers 
in datacenter servicing the VMs. Details of mPP can be found 
in [11]. 

To show the effectiveness of our proposed approach for 
placing multiple copies of VMs on servers, along with mPP, a 
version of our algorithm in which every ܮ is set to one is also 
considered. This prohibits the solution from using more than a 



single VM per client. We denote this version of the algorithm 
with the name of baseline method in the figures. Moreover, to 
show the effect of distributed resource assignment and 
constant power cost for active servers, we implement a 
procedure to find the lower bound on the total energy cost 
with relaxation of these obstacles. To calculate this lower 
bound, for each VM, total energy cost (ܿ

/ܥ
൫ ܲ

  ܲ
൯ ܶ) of 

serving that VM on each server is calculated and the smallest 
energy cost is selected. Summation of these energy costs 
generates a lower bound on the total energy cost. 

C. Numerical Results 

Normalized total energy cost in the system using the 
EVRP algorithm, baseline method, and mPP algorithm is 
presented in Figure 3. 

As can be seen, EVRP reduces the total energy cost of VM 
placement solution by 16 to 20% with respect to mPP 
algorithm. Performance of the baseline algorithm which is 
based on assigning the VMs using DP method is 1 to 4% 
worse than mPP method because baseline method does not 
place the VM on the server with least resource availability and 
instead choose the host server randomly in a selected server 
type. 

TABLE II. PERFORMANCE OF THE PROPOSED SOLUTION W.R.T. LOWER 

BOUND COST AND AVERAGE NUMBER OF VM COPIES 

# of original VMs 
Performance w.r.t 

Lower bound 
average # of VM 

copies 
200 1.13 1.33 
500 1.14 1.32 

1000 1.10 1.29 
2000 1.14 1.31 
4000 1.16 1.30 
5000 1.10 1.35 

 

Table II shows the relative performance of EVRP with 
respect to the derived lower bound on the total energy cost. 
There are two reasons behind the difference between the result 
of EVRP and the lower bound: i) imperfection of the 
algorithm, and ii) constant power consumption of the servers 
(independent from their utilization) and effect of the 
distributed resources in the datacenter. Considering the 
utilization of the servers, we can say that even with 90% 
utilization, the total energy cost of the VM placement solution 
is greater than the lower bound by ~10%. The average number 
of VM copies on the final solution of the EVRP is also shown 
in this table. This value is very small with respect to the 

average ܮ  for VMs which is 3. This shows that the EVRP 
does not make more than one copy of a VM unless it is 
beneficial for the energy cost of the system.    

The effect of different ܮ values is reported in Figure 4. In 
this figure the normalized total energy cost of the VM 
placement solution by using EVRP for different ܮ values are 
shown. As can be seen, the difference between EVRP and a 
version of EVRP that restricts the number of VM copies to 2 is 
4% (average). This shows that the idea of using multiple 
copies of VM is effective even if the number of these copies is 
limited to 2 for big VMs. This difference for a version of 
EVRP that considers at most 10 copies of VM for a VM with 
the biggest CPU cycle requirement is 3% (average). Based on 
our previous work [19], we expect that using more than a 
limited number of copies of a VM affect the QoS of the users 
even if the memory BW of each copy is equal to the memory 
BW of the original VM. More precisely, each copy of the VM 
should be able to service its share of requests and satisfy the 
performance requirements (response time or throughput 
constraint). Decreasing the CPU cycle of each VM copy limits 
the VM copy to a certain percentage of the requests until a 
case that a VM copy cannot even satisfy the performance 
constraint for one request at a time. This issue can be 
addressed by considering a lower bound on the CPU cycle 
requirement of each VM copy. 

Figure 5 shows the average run-time of the EVRP, 
baseline, and mPP methods for different number of VMs. Note 
that VM placement algorithm is called only a few times in 
each charge cycle (one hour in Amazon EC2 service [22]), e.g. 
2-3 times per hour. Also to reduce the time complexity of the 
EVRP algorithm in case of bigger number of VMs, we can use 
a partitioning algorithm to assign a set of VMs to a cluster and 
then apply EVRP in each cluster in parallel.  

Figure 6 shows the average utilization of the servers for 
different ܲ/ܲ and for different VM placement methods. As 
can be seen, the utilization level increases when ܲ/ܲ 
decreases. Smaller value for ܲ/ܲ means that the server is 
less energy-proportional. For these cases, if a server is turned 
ON, we will try to utilize it as much as possible. This behavior 
is seen for all of these algorithms. Moreover, it can be seen 
that increasing maximum ܮ, increases the utilization level in 
average. This behavior is also expected because by increasing 
maximum ܮ, we have more chance to get smaller VMs to fill 
the servers and avoid under-utilized servers.  

Figure 3. Normalized total energy cost of the system Figure 4. Normalized total energy cost of the VM placement solution using for 
different ܮ 
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VII. CONCLUSION 

We presented an approach to generate multiple copies of 
VMs without sacrificing the QoS. An algorithm based on 
dynamic programming and local search was provided to 
determine the number of VM copies, and then place them on 
the servers to minimize the total energy cost in the cloud 
computing system. This approach reduces the energy cost by 
up to 20% with respect to prior VM placement techniques.  

The proposed solution provides a flexible method to 
increase the energy efficiency of the cloud computing system 
or even increase the resource availability in the datacenter. 
Cloud provider can decide how to service VMs with big 
processing resource requirements and how to distribute their 
requests among the servers to maximize the energy efficiency. 

To guarantee QoS for each VM, we only considered fixed 
memory BW requirement and we added a limitation on the 
number of VM copies. For future work, it is possible to 
consider that if a VM is copied, we should increase the total 
processing requirement by a factor. Moreover, other resources 
such as communication (network I/O) resources and secondary 
storage can be considered in this decision making. Moreover, 
different methods should be provisioned for cooperation and 
consistency between different VM copies and failure recovery. 
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Figure 5. Run-time of EVRP for different number of VMs on 2.4GHZ  
E6600 server with 3GB of RAM from Intel 

Figure 6. Ratio of expected percentage of the response time constraint’s 
violation to the maximum allowed percentage of violation 
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