
Map-Based Graph Analysis on MapReduce
Upa Gupta, Leonidas Fegaras

University of Texas at Arlington, CSE
Arlington, TX 76019

{upa.gupta,fegaras}@uta.edu

Abstract—The MapReduce framework has become the de-facto
framework for large-scale data analysis and data mining. One
important area of data analysis is graph analysis. Many graphs
of interest, such as the Web graph and Social Networks, are very
large in size with millions of vertices and billions of edges. To
cope with this vast amount of data, researchers have been using
the MapReduce framework to analyse these graphs extensively.
Unfortunately, most of these graph algorithms are iterative in
nature, requiring repetitive MapReduce jobs. We introduce a
new design pattern for a family of iterative graph algorithms
for the MapReduce framework. Our method is to separate the
immutable graph topology from the graph analysis results. Each
MapReduce node participating in the graph analysis task reads
the same graph partition at each iteration step, which is made
local to the node, but it also reads all the current analysis
results from the distributed file system (DFS). These results are
correlated with the local graph partition using a merge-join and
the new improved analysis results associated with only the nodes
in the graph partition are generated and dumped to the DFS.
Our algorithm requires one MapReduce job for pre-processing
the graph and the repetition of one map-based MapReduce job
for the actual analysis.

Index Terms—MapReduce, Distributed Computing, Graph
Algorithms

I. INTRODUCTION

Recently, the MapReduce programming model [1] has
emerged as a popular framework for large-scale data analy-
sis on the cloud. In particular, Hadoop, the most prevalent
implementation of this framework, has been used extensively
by many companies on a very large scale. Many of the data
being generated at a fast rate take the form of massive graphs
containing millions of nodes and billions of edges. One graph
application, which was one of the original motivations for the
MapReduce framework, is page-rank [2], that calculates the
relative importance of web pages based on the web graph
topology. Analysis of such large graphs is a data intensive
process, which motivates the use of the MapReduce paradigm
to analyse these graphs.

The execution time of a MapReduce job depends on the
computation times of the map and reduce tasks, the disk I/O
time, and the communication time for shuffling intermediate
data between the mappers and reducers. The communication
time dominates the computation time and hence, decreasing
it will greatly improve the efficiency of a MapReduce job.
Previous work required the whole graph to be shuffled to and
sorted by the reducers, leading to the inefficient graph analysis.
This problem becomes even worse given that the most of these
algorithms are iterative in nature, where the computation in
each iteration depends on the results of the previous iteration.

To improve the efficiency of graph analysis, some earlier
work has been done on reducing the size of the input so
that graph partitions are small enough to fit in the memory
of a single cluster node. In addition, the Schimmy design
pattern [14] has been introduced to avoid passing the graph
topology across the network. Unfortunately, this method still
requires the partial results computed for each node to be shuf-
fled among the nodes. There is also earlier work on optimizing
iterative MapReduce jobs, such as Twister [3] and HaLoop [4].
Furthermore, work has been done on implementing graph
analysis in other parallel programming paradigms, such as the
bulk synchronous parallel [5] paradigm, such as Pregel [6] by
Google, and Hama [7] and Giraph [8] by Apache.

In this paper, we introduce a new design pattern for a family
of iterative graph algorithms. Our method is to separate the
immutable graph topology from the graph analysis results.
Each MapReduce node participating in the graph analysis task
always reads the same graph partition at each iteration step,
which is made local to the node, but it also reads all the current
analysis results from the distributed file system (DFS). These
results are correlated with the local graph partition using a
merge-join and the new improved analysis results associated
with only the nodes in the graph partition are generated and
dumped to the DFS. Our method requires that the partial
analysis results associated with only those nodes that belong
to the local graph partition be stored in memory, which is
usually far smaller than the graph partition itself since the
number of nodes is usually far less than the number of edges.
Our algorithm requires one MapReduce job for preprocessing
the graph and the repetition of one map-based MapReduce job
(ie, a job without a reduce phase) for the actual analysis.

The rest of the paper is described as follows: Section II
gives description of related work. Section III introduces the
MapReduce model and Section IV describes the previous
design patterns for graph analysis. Sections V describes our
proposed map-based design pattern for the graph analysis.
Finally, Section VI evaluates the performance of our graph
analysis using various data sets and compares it with the
Schimmy approach.

II. RELATED WORK

The MapReduce model was first introduced by Google in
2004 [1]. Several large organizations have implemented this
model including Apache Hadoop [9], Google Sawzall [10],
and Microsoft Dryad [11]. Hadoop, an open source project

2013 IEEE International Conference on Big Data

978-1-4799-1293-3/13/$31.00 ©2013 IEEE 24

Fig. 1. An Example of a MapReduce Job Execution

developed by Apache, is the most popular MapReduce im-
plementation. It is being used by many companies for data
analysis on large scale.

Since most graph processing algorithms, such as breadth-
first-search, are iterative in nature, they require repetitive map-
reduce jobs. Earlier work [12] [13] on graph processing based
on MapReduce used algorithms that read and shuffle the whole
graph among the participating nodes at each iteration step,
resulting in inefficient graph analysis.

We briefly describe some related work that addresses the
problem of inefficiency of graph processing in the MapReduce
framework. Twister [3] and HaLoop [4], as stated before, are
developed to support iterative computations in the MapReduce
framework. The main feature of Twister is the long running
mapper and reducer tasks with a cacheable distributed mem-
ory, which was used to avoid the repeated data loading from
disks. Twister is also a stream-based system where the output
of mappers is directly streamed to reducers. HaLoop caches
the loop invariant data structures, thus reducing the cost of
loading and shuffling them in subsequent iterations. Neither
Twister nor HaLoop are scalable, because they both require
memory cache for storing and indexing the data, which is
proportional to the size of data.

The Schimmy design pattern [14], introduced by Lin and
Schatz, uses the notion of the parallel merge join to avoid
the shuffling of the graph topology in MapReduce but it still
requires the shuffling of the partial results generated for each
vertex or edge of the graph. MapReduce was also used to filter
data and reduce the data size in a distributed fashion [15], so
that the data analysis can be done in a single machine. This
method is not applicable to some graph algorithms, such as
the PageRank, which requires the whole graph topology and
the metadata of all vertices to compute the popularity of all
the vertices of the graph.

There has been a recent development in incremental pro-
cessing systems, such as Incoop [16], a Hadoop-based in-
cremental processing system, and Google’s Percolator [17],
an incremental processing system based on BigTable. These
systems target applications that process their data in the form
of small updates. They do not target general graph processing

algorithms.
Another programming paradigm for parallel graph process-

ing is the bulk synchronous parallel (BSP) [5] programming
paradigm. Google’s Pregel [6], Apache Hama [7], and Apache
Giraph [8] are systems based on the BSP model. The disad-
vantage of the BSP model is that it requires that the whole
graph be stored in the collective memory of the cluster, which
limits the size of graphs that can be analysed.

III. MAPREDUCE

MapReduce is a distributed processing framework that en-
ables data intensive computations. The framework, inspired
by the functional programming paradigm, has two main com-
ponents, a mapper and a reducer. A mapper works on each
individual input record to generate intermediate results, which
are grouped together based on some key and passed on to
the reducers. A reducer works on the group of intermediate
results associated with the same key and generates the final
result using a result aggregation function. The processing units
of the MapReduce framework are key-value pairs. An instance
of the MapReduce framework with 3 mappers and 2 reducers
is shown in Fig. 1.

Developers can develop MapReduce applications by pro-
viding the implementations for the mapper and the reducer
methods. The MapReduce framework handles all the other
aspects of the execution on a cluster. It is responsible for
scheduling tasks, handling faults and sorting and shuffling the
data between the mappers and the reducers, where the inter-
mediate key-value pairs are grouped by key. The MapReduce
framework works on the top of a distributed file system, which
is responsible for the distribution of the data among all the
worker nodes of the cluster.

After each mapper finishes its task, its intermediate gen-
erated results are passed to the reducers. a process known as
shuffling. Each reducer is assigned a subset of the intermediate
key space, called a partition. To control the assignment of the
key-value pairs to reducers, the MapReduce framework uses
a partitioning function. The intermediate values, after being
grouped by key, are sorted by the reducers. The sort order can
be controlled by a user-defined comparator function.

25

The MapReduce framework also allows developers to spec-
ify a function, called the combiner, to improve performance.
It is similar to the reducer function but it runs directly on the
output of the mapper. The combiner output becomes the input
to the reducer. As it is an optimization, there is no guarantee
on the number of times it will be called. When there is a large
amount of shuffling of data between the map and the reduce
phases, combiners can be used to aggregate the partial result
at the map side to reduce the network traffic.

IV. GRAPH ALGORITHMS

A graph is defined as G(V,E), where V is a set of vertices
and E is a set of directed edges. A directed edge from
vi to vj is represented as the pair of nodes (vi, vj), where
vi ∈ V and vj ∈ V . Each vertex may have some information
associated with it (such as, a node label, a page-rank value,
the number of out-links, etc.) and, similarly, each edge may
have some information associated with it (such as, edge label
and relationship type).

The focus of this paper is on iterative graph algorithms on
directed graphs where partial results associated with nodes can
be improved at each iteration. Such graph algorithms can be
formulated as follows:

repeat
for all vn ∈ V do

Rn ← Fn

Fn ← f({Fm|(vm, vn) ∈ E})
end for

until ∀ vi ∈ V : ρ(Ri, Fi) < θ

where Fn and Fm are the partial results at vertex n and m,
respectively, f is a function to compute the partial result for
each vertex of the graph, ρ is the function to compute the
result improvement between iterations, and θ is the threshold
determining the stopping condition. The algorithm given above
repeats until the termination criterion is met.

Page-Rank, a well-known algorithm for computing the
importance of vertices in a graph based on its structure, can be
captured using the above algorithm. It computes the pagerank
Pi for every vertex vi ∈ V belonging to the graph. Pi is
the probability of reaching the vertex vi through a random
walk in the graph, which is computed based on the topology
of the graph. The page-rank computation often includes a
random periodic jump to any other vertex in the graph with a
probability 1 − d, where d is the dumping factor. The page-
rank of a vertex vi ∈ V of the graph is calculated iteratively
as follows:

Pi =
1− d
|V |

+ d
∑

(vj ,vi)∈E

Pj

|{vm|(vj , vm) ∈ E}|
(1)

where vi, vj and vm are the vertices of the graph, Pj is the
page-rank of node vj from the previous iteration, and Pi is the
new page-rank of the vertex vi. The page-rank equation can be
compared to the general iterative algorithm where calculating
the page-rank of the vertex vi in a single iteration is the
function f and the page-rank calculated for all the vertices

can be seen as a partial result which will be used to calculate
the page-rank of all the vertices in the next iteration.

V. EARLIER WORK

A. Basic Implementation

Although it can apply to other graph algorithms too, we
describe the earlier work on graph analysis based on MapRe-
duce in terms of the page-rank algorithm. A graph in a
MapReduce framework is typically represented as a set of
directed edges, where each edge is represented as a key-value
pair with the source vertex as the key and the destination
vertex as the value. Each vertex p contains the identifier of the
vertex p.id and its meta-data, which includes its current page-
rank value p.pageRank and the number of outgoing edges
p.numOfOutLinks from the vertex.

Algorithm 1 The Mapper for the Basic Implementation of
Page-Rank

1: function MAP(Vertex from, Vertex to)
2: Emit (from.id, (from, to))
3: p← from.pageRank/from.numOfOutLinks
4: Emit (to.id, p)
5: end function

We first describe the basic approach of applying MapReduce
to the graph algorithms described in Section IV. The mapper
function given in Algorithm 1 applies to each key-value pair,
with the source vertix serving as a key. It computes the page-
rank contributions from the source vertex to the destination
vertex and emits the destination vertex id as the key and its
corresponding fraction of page-rank as the value. In addition to
the page-rank contributions, the mapper regenerates the graph
structure by emitting the source vertex id as the key and the
whole edge (a pair) as the value.

Algorithm 2 The Reducer for the Basic Implementation of
Page-Rank

1: function REDUCE(ID m, List [p1, . . . , pn])
2: s← 0
3: M ← null
4: N ← []
5: for all p ∈ [p1, . . . , pn] do
6: if IsPair(p) then
7: M ← p.from
8: insert p.to into N
9: else

10: s← s+ p
11: end if
12: end for
13: M.pageRank ← s
14: for all n ∈ N do
15: Emit (M , n)
16: end for
17: end function

26

The reducer, described in Algorithm 2, gets the page-
rank contributions from each of the incoming edges to a
vertex, along with the graph topology associated with the
vertex. These page-rank contributions are aggregated to get
the updated page-rank value of the vertex. The reducer also
updates the page-rank value of the source vertex and the
revised edge is written back to the disk. This completes an
iteration of the page-rank computation and the output is then
fed again to the mapper to begin the next iteration. Note that,
in Algorithm 2, along with the intermediate partial result of the
vertex M , the set N of all incoming edges to M is also passed.
This is necessary in order to preserve the graph topology to be
used in the next iteration steps. As a result, two types of data
are being passed from mappers to reducers, one is the partial
computation of the vertex value and the other is the incoming
edges to the vertex, which passes the topology of the graph
to the reduce phase. Note that this pseudo-code does not take
the damping factor and dangling nodes into account.

B. The Schimmy Implementation

The basic implementation of a graph algorithm passes
two types of data from mappers to reducers. One is the
partial result computed for the vertex and the other is the
graph topology itself. After receiving the partial results for a
vertex and the graph topology associated with it, the reducer
aggregates the partial results and updates the metadata of
the nodes. The shuffling of the graph structure between the
mapper and reducer has high overhead, especially in the case
of iterative algorithms.

To address the inefficiency of the basic implementation, the
Schimmy design pattern was introduced [14]. The Schimmy
design pattern is based on the concept of the parallel merge
join. A merge join between two given relations S and T
is done by first sorting both relations on their join keys
and then by simultaneously scanning them, joining the rows
having the same join key. This merge join can be processed
in parallel by partitioning S and T into small files S1, . . . , Sn

and T1, . . . , Tn, respectively, based on their join key and by
sorting each partition on the join key. Then, each pair Si/Ti is
processed by a single node that performs a local merge join
and the node results are combined.

In the Schimmy design pattern, the graph G is partitioned
into m partitions, so that each reducer Ri is assigned a
different partition Gi and the edges of each partition are sorted
by the ID of the source vertex. The reducer Ri works on
the intermediate partial results corresponding to the vertices
in partition Gi and uses a merge-join between these results
and the partition Gi to calculate new improved results for the
vertices (Algorithm 3).

The implementation of the page-rank based on the Schimmy
design does not need to shuffle the graph structure and hence
the mapper remains the same as in Algorithm 1 but without
line 2. In the reducer (Algorithm 3), the corresponding graph
partition file is opened (line 2). The reducer reads through this
file until it finds the edge to be updated, then updates the page-
rank of the source vertex of the edge, and then advances to the

Algorithm 3 The Reducer for the Schimmy Implementation
1: function INITIALIZE
2: P.OpenGraphPartition()
3: end function

4: function REDUCE(ID m, List [p1, . . . , pn])
5: s← 0
6: for all p ∈ [p1, . . . , pn] do
7: s← s+ p
8: end for
9: repeat

10: (from, to) ← P.Read()
11: if from.id 6= m then
12: Emit(from, to)
13: else if from.id = m then
14: from.pageRank ← s
15: Emit(from, to)
16: end if
17: until from.id > m
18: end function

next edge. It updates all the edges with the same source vertex.
Once an edge is updated, it is written back to the distributed
file system.

In addition to the design pattern, the Schimmy approach
introduced various improvements, such as using a regular
MapReduce combiner or an in-mapper combiner, which was
found to perform better than a regular combiner. For more
details, refer to [14]

VI. MAP-BASED GRAPH ANALYSIS

Although the Schimmy design pattern improves the effi-
ciency of graph algorithms by avoiding the shuffling and
sorting the graph topology, it still requires shuffling and sorting
of the partially computed results. To avoid this, we introduce
a map-based design pattern for the analysis of the graph. In
contrast to the Schimmy approach, which requires both a map
and a reduce stage at each iteration of the graph analysis, our
method requires just a map stage. As in the case of Schimmy,
our method too uses a parallel merge-join. In Schimmy, the
merge join happens in the reduce stage between a partition of
the graph and the intermediate partial results generated from
the mappers. In our case, the merge-join is done at the map
stage between a partition of the graph and a global file (stored
in DFS) that contains all the partial results. Figure 2 illustrates
this idea.

More specifically, we perform the graph analysis by doing a
parallel merge-join between the partition of graph and a global
table that contains the partial results associated with all nodes.
The graph G is partitioned into G1, . . . , Gm such that edges
with the same destination go to the same partition. Also, each
of the partitions is sorted by the source vertex of the edges.
A global table in the form of a binary DFS file is created that
contains the partial results of each node after the end of each
iteration. This file is kept sorted by the vertex’s ID. Without

27

Fig. 2. Page-Rank Computation using Parallel Merge Join

loss of generality, we describe our graph analysis technique
applied to the page-rank computation.

Each mapper Mi reads the same unchanged partition Mi

and combines it with the global page-rank table using a merge-
join between Mi and the entire global table. Each mapper Mi

generates new page-rank values only for those nodes that are
destinations of the edges in Gi. Note that no other mapper
has edges that have the same destination as those in Gi due
to the way the graph G is partitioned. Thus, each mapper Mi

is responsible for generating its own subset of the new page-
rank values Pi, which does not overlap with anyone else’s.
This is done by aggregating the incoming contributions from
the current page-ranks stored in the global table. As we can
see in Algorithm 4, each mapper uses a dictionary D to store
its own partition Pi of the new page-rank values. The average
size of the dictionary D is |V |/m, where |V | is the number of
graph nodes and m is the number of mappers. Our assumption
is that D can fit in the mapper’s memory. To analyze the
graph, a merge-join is performed between Gi and the global
table during each iteration and the new page-rank values are
aggregated in D, which contains Pi. After Gi is processed,D
is flushed to DFS and becomes one of the new partitions of
the global table.

This algorithm is implemented in MapReduce as follows.
An initial MapReduce job, which is a pre-processing step,
is first called to partition the graph based on the destination
vertex of each edge by using a user-defined Partitioner method
(which uses uniform hashing on the destination vertex). At the
same time, each partition Gi is sorted by the source node of
the edges by using user-defined Key Comparator and Grouping
Comparator methods. Once all the partitions are formed, they
are saved on the distributed file system. In addition, each
reducer node of this MapReduce job generates one partition Pi

of the global table that contains the initial page-rank values and
saves them in a sequence DFS file. All these files generated
by the reducer nodes are saved in the same DFS directory,
thus forming the initial global table.

The mapper that evaluates each iteration step is shown in
Algorithm 4. It evaluates a merge-join between the graph

partition Gi (the mapper input) and the global page-rank table,
since Gi is read sorted by the source of the edges and the
page-rank table is read sorted by the node. During this join,
the mapper aggregates the incoming page-rank contributions
for those vertices that are destinations of Gi edges. When
the source vertex from of the input vertex has the same
ID as the current vertex n read from the page-rank table, it
adds a page-rank contribution from the source vertex from to
the destination vertex to of the edge. These contributions are
aggregated together and saved in the dictionary D. After the
entire Gi is processed, this dictionary will contain the updated
page-ranks of the vertices belonging to that partition. These
values are sorted and flushed out to the disk in a sequence
file format to form a single partition Pi of the new global
page-rank table, which is used by next iteration. The mapper
does not write anything to the disk other than the new page-
rank values. It should be noted that, to decrease the disk write
overhead, we set the data replication parameter of the DFS
sequence file that contains the global page-rank table to one,
so that there is always a single replica of global page-rank
table in DFS.

Algorithm 4 The Mapper for Map-Based Parallel Merge-Join
for Computing Page-Rank

1: function INITIALIZE(())
2: P.OpenPageRankFile()
3: Dictionary D ← empty
4: (n, rank) ← P.Read()
5: end function

6: function MAP(Vertex from, Vertex to)
7: if from.id = n then
8: D[to] + = rank/from.numOfOutLinks
9: end if

10: if from.id ≥ n then
11: repeat
12: (n, rank)← P.Read()
13: until from.id ≥ n
14: end if
15: end function

16: function CLOSE
17: P.WritePageRankFile(D)
18: end function

VII. EXPERIMENTATION

To evaluate the different approaches to implement the page-
rank algorithm, we generate a synthetic graph. These graphs
are generated by R-MAT algorithm [18] using the parameters
a=0.57, b=0.19 and d=0.5. We used the MRQL system [19] to
generate the synthetic large graph of size 7GB, 14GB and 28
GB. They contain 500 million, 1 billion and 2 billion edges
respectively and all of them have 15 million vertices. The file
generated is represented as a flat list of edges stored in the
text format.

28

Fig. 3. Evaluation of Various Design Patterns on a Synthetic Graph

The experimentations are performed on a cluster consist-
ing of 1 frontend server and 17 worker nodes, connected
through a Gigabit Ethernet switch. The cluster is managed
by Rocks Cluster 6.3 running CentOS-5 Linux. For our
experiments, we used Hadoop 1.0.4, distributed by Apache.
The cluster frontend was used exclusively as a NameN-
ode/JobTracker, while the rest 17 worker nodes were used as
DataNodes/TaskTrackers. The frontend server and each of the
worker nodes contain 3.2 Ghz Intel Xeon quad-core CPUs, 4
GB memory. As each worker machine has 4 cores, there are
total of 68 cores available for map/reduce tasks.

We evaluated the efficiency of the map-reduce optimizations
by computing 5 iterations of the page-rank algorithm. We
compared the time taken to perform the page-rank iterations
using the basic, schimmy and our map-based implementations.
We used the range-partitioning method to partition the graph
for each of the methods. The computation time for 5 iterations
of the page-rank algorithm for different graphs is given in
Figure 3.

Before starting the page-rank iterations, the synthetic graph
is preprocessed to compute metadata information of the ver-
tices, such as number of outgoing edges from the vertices,
and to initialize the initial page-rank for each of the vertices.
For the basic and schimmy implementations, there is only
one preprocessing step, but for our map-based implementation
there are two preprocessing steps: one to compute the metadata
information and the other to initialize the first global table with
initial page-rank values for every vertex of the graph.

Our Map-Based approach improves the performance of
graph-analysis over the basic approach as well as the Schimmy
approach. As our appraoch separates the immutable graph
topology from the graph analysis results, there is no shuffling
and sorting phase and hence our approach improves the perfor-
mance of the graph analysis. There has been an improvement
of around 10% over the schimmy based approach. It should
be noted that our approach is applicable to a general class
of graph algorithms, as discussed in section IV. It should
also be noted that the page-rank is computed for each vertex
of the graph and hence, it is an exhaustive graph analysis.
Graph analysis other than page-rank may be less exhaustive
and hence can benefit more from our approach.

VIII. CONCLUSION

Graph analysis in a distributed frameworks, such as Map-
Reduce, is a challenge. There has been approaches for the
analysis of graph algorithms, but most of these approaches
has a high communication cost because of the shuffling and
sorting phases of the map-reduce. Our approach detaches the
immutable graph topology from the analysis and as a result we
get an improved performance as there is less communication
cost.

IX. ACKNOWLEDGEMENTS

This work is supported in part by the National Science
Foundation under the grant 1117369.

29

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” vol. 51, no. 1. New York, NY, USA: ACM, Jan. 2008,
pp. 107–113. [Online]. Available: http://doi.acm.org/10.1145/1327452.
1327492

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Proceedings of the seventh international conference
on World Wide Web 7, ser. WWW7. Amsterdam, The Netherlands,
The Netherlands: Elsevier Science Publishers B. V., 1998, pp. 107–117.
[Online]. Available: http://dl.acm.org/citation.cfm?id=297805.297827

[3] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox, “Twister: a runtime for iterative mapreduce,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 810–818. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851593

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop:
efficient iterative data processing on large clusters,” vol. 3, no. 1-2.
VLDB Endowment, Sep. 2010, pp. 285–296. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1920841.1920881

[5] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, ser. SIGMOD ’10.
New York, NY, USA: ACM, 2010, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

[7] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama:
An efficient matrix computation with the mapreduce framework,” in
Proceedings of the 2010 IEEE Second International Conference on
Cloud Computing Technology and Science, ser. CLOUDCOM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 721–726.
[Online]. Available: http://dx.doi.org/10.1109/CloudCom.2010.17

[8] “Giraph,”
http://incubator.apache.org/giraph/.

[9] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

[10] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with sawzall,” Sci. Program., vol. 13, no. 4, pp.
277–298, Oct. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1239655.1239658

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, ser. EuroSys ’07. New York, NY, USA:
ACM, 2007, pp. 59–72. [Online]. Available: http://doi.acm.org/10.1145/
1272996.1273005

[12] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec,
“Hadi: Fast diameter estimation and mining in massive graphs with
hadoop,” 2008.

[13] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale
graph mining system implementation and observations,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining, ser.
ICDM ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
229–238. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2009.14

[14] J. Lin and M. Schatz, “Design patterns for efficient graph
algorithms in mapreduce,” in Proceedings of the Eighth Workshop
on Mining and Learning with Graphs, ser. MLG ’10. New
York, NY, USA: ACM, 2010, pp. 78–85. [Online]. Available:
http://doi.acm.org/10.1145/1830252.1830263

[15] S. S. S. Lattanzi, B. Moseley and S. Vassilvitskii, “Filtering: a method
for solving graph problems in mapreduce,” in SPAA, 2011, pp. 85–94.

[16] R. R. U. A. A. P. Bhatotia, A. Wieder and R. Pasquin, “Incoop:
Mapreduce for incremental computations,” in SoCC, 2011, p. 7.

[17] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in OSDI, 2010, pp. 251–264.

[18] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in In SDM, 2004.

[19] “Mrql,”
http://lambda.uta.edu/mrql/.

30

