P - a program with input I that runs in time t (I)

D - the set of all valid inputs for P (I)

size (I) - size of input I

 $size : D \rightarrow N$

 $\ensuremath{\text{D}}_n$ - the set of all valid inputs of size n

$$D_n = \{I \in D \mid size(I) = n\}$$

Running time as a function of size of input

Time : $\mathbb{N} \to \mathbb{R}^+$

Worst - case running time

$$T (n) = \max \{t (I) \mid I \in D_n\}$$

Average - case running time

Given probability distribution \textbf{p}_{n} on \textbf{D}_{n} ,

$$\mathtt{T}_{\mathsf{avg}} \ (\mathtt{n}) \ = \ \sum \ \{\mathtt{t} \ (\mathtt{I}) \times \mathtt{p}_{\mathtt{n}} \ (\mathtt{I}) \ \big| \ \mathtt{I} \ \in \ \mathtt{D}_{\mathtt{n}} \}$$

In the case of uniform distribution of probability:

$$T_{avg} \ (n) \ = \ \frac{\sum \left\{ \text{t (I)} \ \middle| \ \text{I } \in D_n \right\}}{\left| \ D_n \ \middle| \right|}$$

Example.

QuickSort:

D - the set of all permutations of some initial interval of the set of natural numbers \mathbb{N} size (I) = number of elements in I (to be sorted)

 \textbf{D}_n - the set of all permutations of $\{\textbf{0}\,,\,\,\,\ldots,\,\,n\,$ - $1\}$

$$|D_n| = n!$$

Worst - case running time:

$$T(n) \sim n^2$$

The worst input of size n is the sequence $< 0, \ldots, n-1 > .$

Average - case running time:

Assume that all inputs of size

n to QuickSort are equally likely (with probability $\frac{1}{n\,!}$).

$$T_{avg}$$
 (n) ~ n log_2 n

Plot[Tooltip[$\{x Log[x], x^2\}$], $\{x, 0, 10\}$]

