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T'(n), max input's size Max(t), and its derivative.

Let T(n) be a running time of some program P. Let us assert
that T(n) is a growing function.

Definition of Max(t)

Max(t) is defined as the maximum size n of input for which
T(n) <t

The inverse of a running time

Under the above assertion, Max(t) is the inverse of T(n), that
is,

| \

t = T(n) iff n = Max(t). (1)

In particular, Max(t) is a growing function as well.
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T'(n), max input's size Max(t), and its derivative.

The following fact holds for every differentiable growing

function f:
1

e @

where fiverse is the inverse of f (it exists since f is a growing
function) and f’ is the derivative of f.

( f;'nverse)/ (X) =

In particular,
1

Max'(t) = T Max(D)).

(3)
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T'(n), max input's size Max(t), and its derivative.

The derivative Max'(t) of Max(t) seems like a good measure
of return on investment of a faster computer (or - equivalently
- longer wait) for program P.

o It tells how fast (or slow) the maximum size of tractable
input to P will grow with the increase of the computer’s
speed.

@ So, the larger Max'(t) the more cost effective it is at
point t to run P on a faster computer.

@ And vice versa: the smaller Max’'(t) the more wasteful it
is at point t to run P on a faster computer.
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T'(n), max input's size Max(t), and its derivative.

When the measure Max'(t) is decreasing then it might be
insightful to consider also the reciprocal = ,(t) of Max'(t).

@ The measure ( j tells how much faster (or longer) the
program P must be executed in order to accomplish the
unit increase of tractable input to P.

@ So, the larger the - ,(t) the more costly it is at point t
to run P on even a slightly larger input.

Dr. Marek A. Suchenek © CSC 311 Fall '14



T'(n), max input's size Max(t), and its derivative.
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T'(n), max input's size Max(t), and its derivative.

Finding the © characterization of f'(t) and of 5 from the ©
characterization of f(t) requires some extra assumption that f
and its © benchmark (representative) satisfy assumptions of
the de I'Hopital rule.

Theorem

Let f and g be positive, increasing, differentiable functions
that both converge to 0 or both diverge to oo as their
arguments diverge to oo. Assume that lim,_, % exists.
Then

fe(g)=rfeo(g)= % € 0(=).
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T'(n), max input's size Max(t), and its derivative.

Below, several examples of T(n) and corresponding Max(t)
and the derivative Max'(t) are described. For the cases viii
1

through xiii the reciprocals Wa(p) are included. All cases i

through xiii may be considered benchmark cases.

Particularly important are cases: i, iii, vii, viii, ix, xi, and
xii.

Note different scales used in graphs of sample functions be/ow.J
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©(loglog n) ... Max(t) € ©(a"); for some a,b > 1

t
Here are graphs of Inlnn and e€:
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T'(n), max input's size Max(t), and its derivative.

Max'(t) € ©(a® b?)
Here is a graph of e ef = e’ *t:
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In this case, the larger t the (dramatically) more it pays off to
run P on a faster computer.
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T'(n), max input's size Max(t), and its derivative.

Iogig n) ... Max(t) € Q(at)™*) N O((bt)™);

T(n)€©

for some a,b > 1

Here are graphs of '°|g" and t':
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T'(n), max input's size Max(t), and its derivative.

Max'(t) € Q((at)* Int) N O((bt)"* Int)

Here is a graph of tfIn t:
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In this case, the larger t the (significantly) more it pays off to

run P on a faster computer.
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©(logn) ... Max(t) € ©(a"); for some a > 1

Here are graphs of Inn and e®:

Max'(t) € ©(a")
See above for a graph of e'.

In this case, the larger t the (significantly) more it pays off to
run P on a faster computer.
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T'(n), max input's size Max(t), and its derivative.

Here are graphs of </n and t:

T(n) € ©(/n)... Max(t) € (1)
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T'(n), max input's size Max(t), and its derivative.

Max'(t) € ©(t?)
Here is a graph of t2:
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In this case, the larger t the more it pays off to run P on a
faster computer.

Dr. Marek A. Suchenek © CSC 311 Fall '14



T'(n), max input's size Max(t), and its derivative.

T(n) € ©(/n)... Max(t) € (t?)
Here are graphs of \/n and t2:
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T'(n), max input's size Max(t), and its derivative.

Max'(t) € O(t)
Here is a graph of t:
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In this case, the larger t the more it pays off to run P on a
faster computer.
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T'(n), max input's size Max(t), and its derivative.

o
n
T(n)e© ... Max(t) € O(tlogt
(n) € O(1or) .- Max(t) € Ot og )
Here are graphs of of Iogn and tint:
i // 150
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T'(n), max input's size Max(t), and its derivative.

Max'(t) € ©(log t)

Here is a graph of Inn:
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In this case, the larger t the (moderately) more it pays off to
run P on a faster computer.
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©(n)...Max(t) € O(t)

Here is a graphs of n and t:
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T'(n), max input's size Max(t), and its derivative.

Max'(t) € ©(1)
Here is a graph of 1:
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In this case, the increase of the maximum size of input in
function of speed of the computer is constant for all t, so the
payoff for running P on a faster computer remains roughly the
same for all sizes of its inputs.
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T'(n), max input's size Max(t), and its derivative.

Here are graphs of nlog n and
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T'(n), max input's size Max(t), and its derivative.

1 ) 1 c
logt”" Max'(t)
and log t:

Max'(t) € ©( O(log t)

1

Here are graphs of oe L
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In this case, the larger t the less it pays off to run P on a
faster computer. More insightfully, the larger the t the
(slightly) more does it cost to accomplish the unit increase of
the tractable input to P.
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©(n?)... Max(t) € ©(V/1)
Here are graphs of n? and +/t:
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T'(n), max input's size Max(t), and its derivative.

1 1
Max'(t) € ©(—=); ———= € ©(V't
() € (1) s € OV
Here are graphs of \/Az and /t:
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In this case, the larger t the less it pays off to run P on a
faster computer. More insightfully, the larger the t the
(moderately) more does it cost to accomplish the unit increase
of the tractable input to P.
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©(n®)... Max(t) € ©(V/1)
Here are graphs of n® and /t:
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T'(n), max input's size Max(t), and its derivative.

1, 1

Max'(t) € © : c O(Vt2
aX( ) ( 3 t2) MaX/(t) ( )
Here are graphs of \/%? and V/t2:
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In this case, the larger t the less it pays off to run P on a
faster computer. More insightfully, the larger the t the
(moderately) more does it cost to accomplish the unit increase
of the tractable input to P.
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©(a")... Max(t) € O(log t); forall a>1

Here are graphs of e” and In t:
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T'(n), max input's size Max(t), and its derivative.

Max (1) € ©(2);

Here are graphs of } and t:

Max'(t)

In this case, the larger t the less it pays off to run P on a
faster computer. More insightfully, the larger the t the
(significantly) more does it cost to accomplish the unit

1

€ O(t)

increase of the tractable input to P.
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©((an)®) ... Max(t) € @(Io:i; t); forall a,b>1

n logt .
Here are graphs of n” and ;
loglog t
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T'(n), max input's size Max(t), and its derivative.

1 1 1 1
Max'(t) € © - =06 : € O(tInl
(t) (tlnlnt t(Inln t)2) (tlnln t) Max'(t) (
Here are graphs of —— — t(lnlln g7 and tinint:
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In this case, the larger t the (dramatically) less it pays off to
run P on a faster computer. More insightfully, the larger the t
the (significantly) more does it cost to accomplish the unit
increase of the tractable input to P.
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T'(n), max input's size Max(t), and its derivative.

T(n) € ©(a"") ... Max(t) € ©(loglog t); for all a,b > 1

Here are graphs of " and log log t:
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T'(n), max input's size Max(t), and its derivative.

1,1
tint” Max'(t)

Here are graphs of -~ and tInt:

Max'(t) € ©( € O(tInt)
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In this case, the larger t the (dramatically) less it pays off to
run P on a faster computer.More insightfully, the larger the t
the (significantly) more does it cost to accomplish the unit
increase of the tractable input to P.
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T'(n), max input's size Max(t), and its derivative.

END J
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