
Average time of sequential search in unordered array

Example

Sequential search on an unordered array.

Find an item x in an unordered array I based only of comparisons of x to elements of I.

Notation

size (I) - number of elements to be searched.

T (n) - number of comparisons performed while searching of an entry in an n - element array I.

Average - case running time for successful search

Tavg
succ

(n) = 
i=0

n-1
Pr (Ii success) × t (Ii) =


i=0

n-1 1

n
(i + 1)

1 + n

2

For sequential search, Tavg
succ

(n) is the same for ordered and unordered array because sequential

search dies not take advantage of the order while successfully searching for a key.

Average - case running time for unsuccessful search

Tavg
fail

(n) = n

(Because for linear search, it' s the worst case each time it' s unsuccessful.)

Hence, Tavg (n) = q * Tavg
succ

(n) + p * Tavg
fail

(n) =

= q ×
1 + n

2
+ (1 -q) × n

q ×
1 + n

2
+ (1 - q) × n

n (1 - q) +
1

2
(1 + n) q

Mathematica can' t nicely simplify the above formula to a polynomial A × n + B =

1 -
q

2
n +

q

2
for n.

As an exercise, let' s pretend that we can' t do it, eaither.

Limit
1

n
n (1 - q) +

1

2
(1 + n) q , {n → ∞}

1 -
q

2


0 < 1 -
q

2
< ∞

So, Tavg (n) ∈ Θ (n)

More precisely,

Tavg (n)~ 1 -
q

2
n

meaning

Tavg (n) = 1 -
q

2
n + o (n)

n (1 - q) +
1

2
(1 + n) q - 1 -

q

2
n

n (1 - q) - n 1 -
q

2
+
1

2
(1 + n) q

Simplify[%]

q

2

Thus

Tavg (n) = 1 -
q

2
n +

q

2

Optimality

Theorem

For an unordered array, sequential search is average -

case optimal in the class C of algorithms that search by comparison of keys.

2 AvgerageTimeSeqSearchUnordered.nb

Proof.

1. Unsuccessful sequential search on an unordered array is average - case optimal in class C.

The lowewr bound on the number of comparisons is n, because n comparisons are
needed in order to establish that an item x is not an element of an unordered array I.

This can be established as follows. First,
give any search algorithm P an x to search in an array I that does not contain
x. This will force P to perform n comparisons. Should P neglect to compare x to some
element I[j] (here we use assumption that P searches by comparisons of keys),

that element will be assigned value x after P halted, thus proving that P is incorrect.

(The above is called adversary strategy.)

But n is also the number that unsuccessful sequential search performs.

Hence the optimality of unsuccessful sequential search in class C.

2. Successful sequential search on an unordered array is average - case optimal in class C.

Regardless of the order in which x is compared to the elements of array I,
any search that serches an unordered array by comparisons
of keys can be forced (by an adversary strategy) for each

0 ≤ i < n

and some array I, to perform i + 1 comparisons, each with probability of
1

n
.

(Exercise : Design such an adversary strategy.)

This demonstrates that the formula


i=0

n-1 1

n
(i + 1)

provides a lower bound for average number of
comparisons while searching an unordered array of n elements.

But the above formula also provides the average number of comparisons
sequential search will perform while searching an unordered array of n elements.

Hence the average - case optimality of sequential search on an unordered array.

Since both unsuccessful and successful sequential search of an unordered array are average -

case optimal in class C, the sequential search of an unordered
array is optimal in class C, too. □

AvgerageTimeSeqSearchUnordered.nb 3

