Approximations of minimal epl

If m is the number of external nodes then m lg m is an "easy" (proved in the textbook by a routine induction - see an "optional" file Ext_path _etc.pdf) lower bound on epl and $m ([Log2[m]] + 1) - 2^{[Log2[m]]}$ is the exact minimum epl., that has been derived in the file http://csc.csudh.edu/suchenek/CSC401/Slides/2trees.pdf As has been calculated in file LowerBoundAverageCaseSorting.nb, this is the same as $m (lgm + \epsilon (m))$. So, the mimimum epl in any 2 - tree with m external nodes is: $m (Log2[m] + \epsilon[m])$ where $ln[7] := \beta[x_] := 1 + x - 2^x$ $\theta[x_] := [x] - x$ $\epsilon[x_{]} := \beta[\theta[Log2[x]]]$ Here is a plot of function $\epsilon[n]$ $Plot[\{\epsilon[n], .0861, .5\}, \{n, 1, 1000\}, AspectRatio \rightarrow .13]$ Because ϵ oscillates between 0 and 0.08607133205593431, we conclude that $mlgm \le epl < m(lgm + .0861)$ These are tight lower and upper approximations on m ($\lceil Log2[m] \rceil + 1$) - $2^{\lceil Log2[m] \rceil}$. See file LowerBoundAverageCaseSorting.nb. for detailed calculations. Here is a plot of the minimum epl against the textbook's lower bound m lg m and our approximation:

Here is a plot of the difference between the first two against the line y = .0861 x.

 $\texttt{Plot} \left[\left\{ \texttt{m} \left(\lceil \texttt{Log2} \left[\texttt{m} \right] \rceil + 1 \right) - 2^{\lceil \texttt{Log2} \left[\texttt{m} \right] \rceil} - \texttt{m} \, \texttt{Log2} \left[\texttt{m} \right], \; .0861 \, \texttt{m} \right\}, \; \left\{ \texttt{m}, \; 1, \; 200 \right\} \right]$

The rest of this file is optional for all students.

Here it is, the unsuccessful attempt:

$$\operatorname{Limit}\left[\left\{\left(\lceil \operatorname{Log2}[m]\rceil + 1\right) - \frac{1}{m}2^{\lceil \operatorname{Log2}[m]\rceil}\right) - \operatorname{Log2}[m]\right\}, m \to \infty\right]$$

$$\left\{\operatorname{Interval}\left[\left\{-1, 1\right\}\right]\right\}$$

So, we plot of the difference divided by m against constant .0861 .

Plot
$$\left[\left\{ \left(\lceil \text{Log2}[m] \rceil + 1 \right) - \frac{1}{m} 2^{\lceil \text{Log2}[m] \rceil} \right) - \text{Log2}[m], .0861 \right\}, \{m, 1, 2000000\} \right]$$

It ranges between 0 and .0861.

The function that defines it (for x = [Log2[m]] - Log2[m]) is:

$$\alpha (x) = 1 + x - 2^x$$

$$Plot[{1 + x - 2^x, 1}, {x, 0, 1}]$$

So the average length from the root to an external node in a balanced 2 - tree with m external nodes has these lower and upper approximations:

$$\text{Log2[m]} \leq \lceil \text{Log2[m]} \rceil + 1 - \frac{1}{m} 2^{\lceil \text{Log2[m]} \rceil} < \text{Log2[m]} + .0861$$

 $\texttt{Plot}\big[\texttt{Tooltip}\big[\big\{\,\texttt{m}\,\texttt{Log2}\,\texttt{[m]}\,\,,\,\,\texttt{m}\,\,(\lceil\texttt{Log2}\,\texttt{[m]}\,\rceil\,+\,1)\,\,-\,2^{\lceil\texttt{Log2}\,\texttt{[m]}\,\rceil}\,,\,\,\,\texttt{m}\,\,(\texttt{Log2}\,\texttt{[m]}\,+\,.\,0\,8\,6\,1)\,\big\}\big]\,,\,\,\{\texttt{m},\,\,14\,0\,,\,\,23\,0\,\}\big]$

We will discover in file LowerBoundAverageCaseSorting.nb that the middle line above is the lower bound on the worst - case running time of any sorting program that sorts by a decision tree.