Worst - case Optimality of InsertionSort and Lower Bounds (worst — case and average)
on Sorting that removes at most one inversion after each comparison
There aren! permutations of ndistinct elements.
An inversion in permutation s is apair (j, k) such that j appears beforekinswbutk < j.
For example, permutation (3, 4, 1, 5, 2) has 5 inversions :
(3, 1), (3,2), (4,1), (4, 2) and (5, 2).
Definition
C - aclass of sorting algorithms that sort by comparisons
of keys and remove at most one inversion after each comparison.
Insertion sort is inclassC.

Exercise : Proveit!

Let
T (n)
be the minimum number of comparisons that any algorithm
in class Cmust performon any input of sizen in the worst case.
Let

Tavg (1)
be the minimum number of comparisons that any algorithm

in class Cmust performon any input of sizen in the average case,
assuming that all arrangements (permutations) of input elements

1
are equally likely (have the same probability of —) .
n!

Wewill establish lower bounds on T (n) and Tavg (D) .
Let ' s count inversions in permutations.

"Ordered" permutation (1, 2, 3, ..., n) has 0 inversions.

This is the best - case scenario for a sorting program in class C.

2| InsertionSortOptimality.nb

All pairs (j, k), wherel < k< 3j <n,
are inversions in "anti-ordered" permutation (n, ..., 3, 2, 1) .

This is the worst - case scenario for a sorting program in class C.
How many pairs of that kind are there?

n? pairs (j, k)
n are of the form (j, j)
So, n? - nareof the form (j, k) wherej # k.
Half of them are of the form (j, k), wherel < k<j=sn

nZ-n n(n-1)
So, thereare 5 = inversions in "anti-ordered" permutation (n, ..., 3, 2, 1) .

Therorem l. Every algorithmin class C

n(n-1)
must performat least ——— comparisons in the worst case.
2
n(n-1)
Proof. There are — inversions in a decreasingly ordered input array of n elements
2

for a sorting program P in class C. So, Pmust performat least that many comparisons.

Corollary. Insertion Sort is worst - case optimal in class C.
(Make sure you know why'.)

Theorem 2. Every algorithm in class Cmust

n(n-1)
performat least ———— comparisons in the average case.
4

Proof. Letn 2 2
(otherwise, no comparisons are made) .

Given permutation s, let reverse (x) be the result of reversing the order of .
For example, reverse (4, 2,1, 3) = (3,1, 2, 4).

Of course, reverse (7) is a permutation and is unique for eachr,

InsertionSortOptimality.nb

reverse (mw) # 7
(since the only palindrome permutation is forn = 1)

and reverse (reverse (7)) = 7.

Thus we can partition the set Perm, of alln! permutations of (1, 2, 3, ..., n) onto

n!
T sets {m, reverse (m)} ,

where it is any permutations of (1, 2, 3, ..., n).(Make sure you know why.)
The set
P = {{m, reverse (m)} | mis a permutationof (1, 2, 3, ..., n)}

is apartition because :
each element of P is non - empty,

UP = Perm,, and

foranyR, Se€ P, eitherR=SorR()S=0.
(Make sure you know why'.)

Sinceapair (i, j), wherel < j<is<n,
is an inversion either in a permutation sroxr in reverse (nx),

n(n-1)
there is total T of inversions in each element {i, reverse (5)} of P.

(Make sure you know why.)

So, the total number of inversions in Perm, is egual to the total number of permutations in P,

n(n-1)
which is equal to T times the number of elements of P, or

n(n-1) n!
- =
2 2

1
Hence, since each permutation have the same probability —,
n!

the expected number of inversions per permutationis

1 n(n-1)
X —— X

n! 2

n!
2
which is the same as the number of inversions per permutation on average.

n(n-1)
So, eachalgorithmin Cmust performat least T comparisons on average

|3

4| InsertionSortOptimality.nb

(Make sure you know why.) while sorting a permutation of ndistinct elements.

