## Worst – case Optimality of InsertionSort and Lower Bounds (worst – case and average) on Sorting that removes at most one inversion after each comparison

There are n! permutations of n distinct elements. An inversion in permutation  $\pi$  is a pair (j, k) such that j appears before k in  $\pi$  but k < j. For example, permutation (3, 4, 1, 5, 2) has 5 inversions: (3, 1), (3, 2), (4, 1), (4, 2) and (5, 2). **Definition** C - a class of sorting algorithms that sort by comparisons of keys and remove at most one inversion after each comparison. Insertion sort is in class C. Exercise: Prove it! Let T (n) be the minimum number of comparisons that any algorithm in class C must perform on any input of size n in the worst case. Let Tavg (n) be the minimum number of comparisons that any algorithm in class C must perform on any input of size n in the average case, assuming that all arrangements (permutations) of input elements are equally likely (have the same probability of  $\frac{1}{n!}$ ). We will establish lower bounds on T (n) and  $T_{avg}$  (n). Let's count inversions in permutations. "Ordered" permutation (1, 2, 3, ..., n) has 0 inversions.

This is the best - case scenario for a sorting program in class C.

All pairs (j, k), where  $1 \le k < j \le n$ , are inversions in "anti-ordered" permutation (n, ..., 3, 2, 1) .

This is the worst - case scenario for a sorting program in class C.

How many pairs of that kind are there?

n<sup>2</sup> pairs (j, k)

n are of the form (j, j)

So,  $n^2$  - n are of the form (j, k) where j  $\neq$  k.

Half of them are of the form (j, k), where  $1 \le k < j \le n$ 

So, there are  $\frac{n^2-n}{2}=\frac{n(n-1)}{2}$  inversions in "anti-ordered" permutation  $(n,\ldots,3,2,1)$ .

Therorem 1. Every algorithm in class C

must perform at least  $\frac{n(n-1)}{2}$  comparisons in the worst case.

Proof. There are  $\frac{n(n-1)}{2}$  inversions in a decreasingly ordered input array of n elements for a sorting program P in class C. So, P must perform at least that many comparisons.

Corollary. Insertion Sort is worst - case optimal in class C. (Make sure you know why.)

Theorem 2. Every algorithm in class C must

perform at least  $\frac{n (n-1)}{4}$  comparisons in the average case.

Proof. Let  $n \ge 2$ (otherwise, no comparisons are made).

Given permutation  $\pi$ , let reverse  $(\pi)$  be the result of reversing the order of  $\pi$ .

For example, reverse (4, 2, 1, 3) = (3, 1, 2, 4).

Of course, reverse  $(\pi)$  is a permutation and is unique for each  $\pi$ ,

which is the same as the number of inversions per permutation on average.

So, each algorithm in C must perform at least  $\frac{n(n-1)}{4}$  comparisons on average

( ${\color{red}{Make\ sure\ you\ know\ why.}}$ ) while sorting a permutation of n distinct elements.