
Worst - caseOptimality of InsertionSort and LowerBounds (worst - case and average)
onSorting that removes atmost one inversion after each comparison

There are n! permutations of n distinct elements.

An inversion in permutation π is a pair (j, k) such that j appears before k in π but k < j.

For example, permutation (3, 4, 1, 5, 2) has 5 inversions :

(3, 1), (3, 2), (4, 1), (4, 2) and (5, 2).

Definition

C - a class of sorting algorithms that sort by comparisons

of keys and remove at most one inversion after each comparison.

Insertion sort is in class C.

Exercise : Prove it!

Let

T (n)

be the minimum number of comparisons that any algorithm

in class C must perform on any input of size n in the worst case.

Let

Tavg (n)

be the minimum number of comparisons that any algorithm

in class C must perform on any input of size n in the average case,

assuming that all arrangements (permutations) of input elements

are equally likely have the same probability of
1

n!
.

We will establish lower bounds on T (n) and Tavg (n).

Let' s count inversions in permutations.

"Ordered" permutation (1, 2, 3, ..., n) has 0 inversions.

This is the best - case scenario for a sorting program in class C.

All pairs (j, k), where 1 ≤ k < j ≤ n,

are inversions in "anti-ordered" permutation (n, ..., 3, 2, 1) .

This is the worst - case scenario for a sorting program in class C.

How many pairs of that kind are there?

n2 pairs (j, k)

n are of the form (j, j)

So, n2 - n are of the form (j, k) where j ≠ k.

Half of them are of the form (j, k), where 1 ≤ k < j ≤ n

So, there are
n2 - n

2
=

n (n - 1)

2
inversions in "anti-ordered" permutation (n, ..., 3, 2, 1) .

Therorem 1. Every algorithm in class C

must perform at least
n (n - 1)

2
comparisons in the worst case.

Proof. There are
n (n - 1)

2
inversions in a decreasingly ordered input array of n elements

for a sorting program P in class C. So, P must perform at least that many comparisons.

Corollary. Insertion Sort is worst - case optimal in class C.

(Make sure you know why.)

Theorem 2. Every algorithm in class C must

perform at least
n (n - 1)

4
comparisons in the average case.

Proof. Let n ≥ 2

(otherwise, no comparisons are made).

Given permutation π, let reverse (π) be the result of reversing the order of π.

For example, reverse (4, 2, 1, 3) = (3, 1, 2, 4).

Of course, reverse (π) is a permutation and is unique for each π,

2 InsertionSortOptimality.nb

reverse (π) ≠ π
(since the only palindrome permutation is for n = 1)

and reverse (reverse (π)) = π.

Thus we can partition the set Permn of all n! permutations of (1, 2, 3, ..., n) onto

n!

2
sets {π, reverse (π)} ,

where π is any permutations of (1, 2, 3, ..., n).(Make sure you know why.)

The set

P = {{π, reverse (π)} π is a permutation of (1, 2, 3, ..., n)}

is a partition because :

each element of P is non - empty,

 P = Permn, and

for any R, S ∈ P, either R = S or R ⋂ S = 0.

(Make sure you know why.)

Since a pair (i, j), where 1 ≤ j < i ≤ n ,

is an inversion either in a permutation π or in reverse (π),

there is total
n (n - 1)

2
of inversions in each element {π, reverse (π)} of P.

(Make sure you know why.)

So, the total number of inversions in Permn is egual to the total number of permutations in P,

which is equal to
n (n - 1)

2
times the number of elements of P, or

n (n - 1)

2
×
n!

2

Hence, since each permutation have the same probability
1

n!
,

the expected number of inversions per permutation is

1

n!
×
n (n - 1)

2
×
n!

2
=

=
n (n - 1)

4

which is the same as the number of inversions per permutation on average.

So, each algorithm in C must perform at least
n (n - 1)

4
comparisons on average

InsertionSortOptimality.nb 3

(Make sure you know why.) while sorting a permutation of n distinct elements.

4 InsertionSortOptimality.nb

