Worst - case preformance of InsertionSort

Worst - case number of comparisons while inserting E
i-thelement (1 <i<n)toasorted sequenceof (i-1) elements :

i-1
(*# the meaning of i in this file is different than
the meaning of i in the previous file - average performance =)

So, theworst - case number of comparisons done by insertion sort is

T(n) = o (i-1)

Fact:or[z;l=1 (i - 1)]

1
—(-1+n)n
2

Thus

1
T(n) = —n(n-1)
2

Exercise : Find two (2) different permutations of the set
{1, 2,3,4,5,6,7, 8,9, 10}
that make worst cases of size 10 for InsertionSort.
(There are more than 2. Can you figure out howmany different permutations of the set
{1, 2, 3,4,5,6, 7, 8,9, 10} make all theworst cases for size 10 are there?)

1
Plot[— n (n
2

1), {n, 1, 20}]

150

100

50




2| InsertionSortWorstTime.

in (n-1)
Limit[ = - , (n- oo}]
n
1
{1
so,

in(n-1)

Limit[ , {n- oo}]
n Log[n]

{0}

So,

T (n) ¢ O (nlogn)

Interesting fact (optional for all students)

Consider BinaryInsertionSort that works like InsertionSort except that it runs the standard
binary search algorithm in order to determine the place for an insertion of the next element.

This does not save any moves of keys that still need tobe shifted up in order to make a
room for insertion but it saves quite a 1ot of comparisons of keys in the worst case.

Since the number of comparisons of keys performed in the worst case while
inserting a key into an ordered array of i keys is now the same as the number
of comparisons of keys that the Binary Search performes in the worst case
while searching for a key in an ordered array of i keys, the former is equal to

|[Log2[i]] +1 = [Log2[i+1]7.

Thus the number of comparisons of keys performed in the worst case by BinaryInsertionSort is the
sum of the above with i ranging from 0 (inserting the first key into an empty array) to
n-1 (inserting the last n - thkey into an

n-1-element array. This is equal to
n-1 . n 0
Do TLog2[i+1]1 = )" [Log2[i]] =

i=

n [Log2[n]] - 2te92[mI1 4 1,



