Upper bounds and lower bounds on the time necessary to solve the problem, with example FindMax

(See page 39 - 40 of textbookfor more narrative)

Suppose that a problem Q (I) has only three solutions whose worst - case running times are:

$$Log[n] + Sin[n] + 10,$$

$$\sqrt{n}$$
 + 4, and

n / Log[n],

where n is the size of an input I.

FunctionLog[n] is a lower bound of all three.

 $Limit[(Log[n] + Sin[n] + 10) / Log[n], n \rightarrow \infty]$

1

$$Limit\left[\frac{\sqrt{n}+4}{Log[n]}, n \rightarrow \infty\right]$$

ω

$$\text{Limit}\Big[\frac{\text{n/Log[n]}}{\text{Log[n]}}\text{, n}\rightarrow \infty\Big]$$

 ∞

So, Log[n] is a lower bound on the time necessary to solve the problem Q (I).

Each of the runnigtimes if problem's solutions are (automatically) upper bounds on the time necessary to solve the problem Q (I).

$$Plot\Big[Tooltip\Big[\Big\{Log[n]+Sin[n]+10,\,\sqrt{n}+4,\,n/Log[n],\,2Log[n]\Big\}\Big],\,\{n,\,3,\,200\}\Big]$$

Here is an improved (smaller, that is) upper bound for Q:

$$Plot\Big[Tooltip\Big[Min\Big[Log[n]+Sin[n]+10,\,\sqrt{n}+4,\,n/Log[n]\Big]\Big],\,\{n,\,3,\,200\}\Big]$$

So, if there were a solution that had worst-case running time Log[n] then such a solution would be worst-case optimal.

Average-case analysisis similar.

Example: FindMax.

Problem Q (I): Given an unsorted integer array I of size n, find an index of the largest element of I, using comparisons of elements of array as the only means of deciding which one it is.

```
of comparisons
that are necessary to solve {\tt Q} (I) for any input I of size n.
   Lower bound on T (n).
Assume all elements of I are different.
   The worst - case scenario will automatically be at least as bad as this.
   There are (n-1) non-maximal elements of I,
and the algorithm must "know" who they are.
   The algorithm "knows" that an element x of I is non-
 maximaliff x lost at least one comparison to some other element of I.
   Each comparisonleaves one loser element.
   An algorithm that performed no more than
  (n-2) comparisonsidentified no more than (n-2) losers.
   So, at least 2 elements are non - losers, each of which may be the maximal one.
  Hence, at least (n-1) comparisons are needed.
  So,
            f(n) = n-1
is a lower bound on the worst-case running time of (any solution of) Q (I).
   The worst-
 case running time of linear search is (automatically) an upper bound on the worst - case
Linear search finds max element of I after (n-1) comparisons
  Hence, the worst-case running time of linear search is both a
  lower bound and an upper bound on the wost - case running time for Q (I).
   In other words,
linear search is a worst-case optimal solution of Q (I) in the class of
  algorithmsthat make their decisions based only on comparisons of keys.
```

T (n) - the worst - case running time for the problem measured as the number