
A proof that Accelerated FixHeap run on an almost -

heap of n nodes will perform no more than

dlg nt + dlg lg nt + 1

comparisons.

Let CAccFixHeap HnL be the number of comparisonthat the AcceleratedFixHeap

Hcall it AFHL performsin the worst case while fixing an almost- heap H on n nodes.

AFH will demotethe root R of H, if necessary,

down along the path P of the larger child. The length of P is no more than dlg nt,

so AFH will perform no more than

dlg nt
comparisonsHone comp per levelL just to find P while demotingR.

This upper bound remainsan upper bound even if R has been accidentallydemotedtoo far

Hsay, to the level L, with L comparisonssince one comparisonis performedfor each levelL
and must be promotedup one or more levels. In such a case,

R will be promotedno furtherthen one level below the level at which R was

comparedpreviouslyto a node in P. The distanceHupL of such promotion,

measuredin the number of levelspassed, is not largerthan the distanceHdownL
dlg nt - L from L to the last level of H.HExcercise: Prove it!L

Since only one comparisonper level is performedwhile promotingR,

the total number of comparisonsfor all demotionsand subsequent

promotionsmust be not largerthan L + dlg nt - L = dlg nt.

Now comesthe Binary Search part.

There are dlg nt + 1 nodes along P, one of wich is the root R of H. So,

there are dlg nt remainingnodes along P. All these remainingnodes are ordered decreasingly. AFH

needsto find the level of H at which to insertR into P using the Binary Search.

The worst-

case number of comparisonsperformedby Binary Search on m ordered elementsis dlg mt + 1.

Since there are m = dlg nt nodesHall nodes of P exceptfor the root RL,

the worst- case number of comparisonsthat Binary Search will perform on those nodes is dlg mt + 1 =

dlg dlg ntt + 1 .

Therefore, the number of comparisonsCAccFixHeap HnL performed

by AFH will be not greaterthan dlg nt + dlg dlg ntt + 1, that is,

CAccFixHeap HnL £ dlg nt + dlg dlg ntt + 1.

Let' s simplifydlg dlg ntt.

dlg dlg ntt = max 8i : i £ lg dlg nt< = max :i : 2i
£ 2lg e lg n u > = max :i : 2i

£ dlg nt>.

Now, let' s show that for any integer i,

2i
£ dlg nt Í 2i

£ lg n.

Of course, if 2i
£ dlg nt then 2i

£ lg n, simply becausedlg nt £ lg n.

Let' s assume 2i
£ lg n.

Since i is an integer, 2i is an integer,

too. Becausedlg nt is the largestinteger m that satisfiesm £ lg n,

we must have 2i
£ m. In other words, 2i

£ m = dlg nt. Hence, 2i
£ dlg nt.

This way we proved 2i
£ dlg nt Í 2i

£ lg n.



Therefore

max :i : 2i
£ dlg nt> = max :i : 2i

£ lg n> = max :i : lg 2i
£ lg lg n> =

= max 8i : i £ lg lg n< = dlg dlg ntt.

Thus

dlg dlg ntt = dlg lg nt.

Hence,

CAccFixHeap HnL £ dlg nt + dlg lg nt + 1.

This completesthe proof.

2   Proof_comps_AccHeapSort.nb


