
Copyright by Dr . Marek A . Suchenek 2012, 2013, 2014

This material is intended for future publication .

Absolutely positively no copying no printing no sharing no distributing of ANY kind , please .

Worst - case lower bound on searching
for x in a sorted array E with n elements

Carries on the details of computations in the textbook , Section 1.6. 4 Optimality , p. 59 - 60.

The result is proven for any algorithm that searches via decision tree ;

in particular , for any algorithm that searches by comparisons of keys.

Eg . : 1 2 3 4 5 6 7 9 10 11 12 13

n = 12

x = 8 H unsucessfulL

Decision tree T for searching :

TreePlot@86 ® 3, 6 ® 10, 3 ® 1, 3 ® 4, 10 ® 7, 10 ® 12, 1 ® "-",

1 ® 2, 4 ® "- ", 4 ® 5, 7 ® " - ", 7 ® 9, 12 ® 11, 12 ® 13, 2 ® " - ",

5 ® " - ", 9 ® " - ", 11 ® " - ", 13 ® " - ", 2 ® " - ",

5 ® " - ", 9 ® " - ", 11 ® " - ", 13 ® " - "<,

VertexLabeling ® True , DirectedEdges ® True , VertexRenderingFunction ®

H8White , EdgeForm @Black D, Disk @ð, .2D, Black , Text@ð2, ð1D< &L, AspectRatio ® 0.47D

6

3 10

1 4 7 12

- 2 - 5 - 9 11 13

- - - - -- - - - -

p = the length of the longest path in T from

the root to any decision node H p = 3 on the above picture L

p + 1 = the number of comparisons done along the longest path in T H p = 4 on the above picture L
N - the number of decision nodes in the decision tree

n £ N

What is the length p of a longest path H from the root down , measured by the number of edges passed L
in a shortest decision tree T with N decision nodes ?

We will use an example of the shortest decision tree with N decision

nodes. Because all shortest decision trees with N nodes have the same depth ,

using that example will not constrain the generality of proof.

We define T so that all levels of T , except perhaps for the last level,

are full H have maximum possible number of decision nodesL. Clearly ,

one cannot have a shorter decision tree with N decision nodes than that.

At every level i of T , except, perhaps, for the last level p, the number of nodes is 2 i . So,

N > 1 + 2 + 4 + ... + 2 p - 1
= â

i = 0

p - 1
2 i

=

â
i = 0

p - 1
2 i

-1 + 2 p

The last level p contains no more than 2 p nodes. So,

N £ 1 + 2 + 4 + ... + 2 p
= â

i = 0

p
2 i

=

â
i = 0

p
2 i

-1 + 2 1 + p

So, -1 + 2 p
< N £ -1 + 2 1 + p

or 2 p
< N + 1 £ 2 1 + p

or 2 p
£ N < 2 1 + p

p £ Log2@N D < 1 + p

or

p = d Log2@N Dt

or

p + 1 = d Log2@N Dt + 1

The above is a lower bound on the number of comparisons that any search that searches

for an entry by comparing it to elements of the array must perform in the worst case .

Exercise : Prove it !

It is the depth of a shortest binary tree with N nodes.

Hence , binary search is worst case optimal in the mentioned above class of searching algorithms.

2 WorstCaseOptimalityBinSearch.nb

