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Worst - case lower bound on searching
for x in a sorted array E with n elements

Carries on the details of computations in the textbook , Section 1.6. 4 Optimality , p. 59 - 60.

The result is proven for any algorithm that searches via decision tree ;

in particular , for any algorithm that searches by comparisons of keys.

Eg . : 1 2 3 4 5 6 7 9 10 11 12 13

n = 12

x = 8 H unsucessfulL

Decision tree T for searching :
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p = the length of the longest path in T from

the root to any decision node H p = 3 on the above picture L

p + 1 = the number of comparisons done along the longest path in T H p = 4 on the above picture L
N - the number of decision nodes in the decision tree

n £ N



What is the length p of a longest path H from the root down , measured by the number of edges passed L
in a shortest decision tree T with N decision nodes ?

We will use an example of the shortest decision tree with N decision

nodes. Because all shortest decision trees with N nodes have the same depth ,

using that example will not constrain the generality of proof.

We define T so that all levels of T , except perhaps for the last level,

are full H have maximum possible number of decision nodesL. Clearly ,

one cannot have a shorter decision tree with N decision nodes than that.

At every level i of T , except, perhaps, for the last level p, the number of nodes is 2 i . So,
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The last level p contains no more than 2 p nodes. So,
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So, -1 + 2 p
< N £ -1 + 2 1 + p
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or 2 p
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p £ Log2@N D < 1 + p

or

p = d Log2@N Dt

or

p + 1 = d Log2@N Dt + 1

The above is a lower bound on the number of comparisons that any search that searches

for an entry by comparing it to elements of the array must perform in the worst case .

Exercise : Prove it !

It is the depth of a shortest binary tree with N nodes.

Hence , binary search is worst case optimal in the mentioned above class of searching algorithms.

2   WorstCaseOptimalityBinSearch.nb


