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Wrst - case | ower bound on searching
for xin asorted array Ewth n elenents

Carries on the details of conputations in the textbook, Section 1.6. 4 (ptinality, p. 59 - 60.

The result is proven for any algorithmthat searches via decision tree;
in particular, for any algorithmthat searches by conparisons of keys.
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Decision tree T for searching :
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VertexLabel ing » True, D rectedEdges - True, VertexRenderingFunction -
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p=the length of the longest path in T from
the root to any decision node (p = 3 on the above picture)

p + 1 =the nunber of conparisons done along the longest path in T (p = 4 on the above picture)

N - the nunber of decision nodes in the decision tree

n < N
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Wiat is the length p of a longest path (fromthe root down, neasured by the nunber of edges passed)
in a shortest decision tree T with N decision nodes?

V¢ will use an exanple of the shortest decision tree with N decision
nodes. Because all shortest decision trees with N nodes have the sane depth,
using that exanple will not constrain the generality of proof.

V¢ define T sothat all levels of T, except perhaps for the last |evel,
are full (have naxi mum possibl e nunber of decision nodes). Qearly,
one cannot have a shorter decision tree with N decision nodes than that .

At every level i of T, except, perhaps, for the last level p, the nunber of nodes is 21 g,
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The last level p contains no nore than 2P nodes. So,

N < 1+2+4+...+2P= ip_02i=
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S0, -1+ 2P < N s -1+21+p
or 2P < N+1 < 21+p

or 2P < N < 21+p

p < Log2[N] < 1+p

or

p= LLog2[N]]

or

p+1 = |[Log2[N]] +1

The above is a | ower bound on the nunber of conparisons that any search that searches
for an entry by conparing it to elenents of the array nust performin the worst case.

Exercise: Prove it !
It isthe depth of a shortest binary tree with N nodes.

Hence, binary search is worst case optinmal in the nentioned above class of searching al gorithns.



