Copyright by Dr. Marek A. Suchenek 2012, 2013, 2014

This material is intended for future publication.

Absolutely positively no copying no printing no sharing no distributing of ANY kind, please.

Worst - case lower bound on searching for x in a sorted array E with n elements

Carries on the details of computations in the textbook, Section 1.6.4 Optimality, p. 59 - 60.

The result is proven for any algorithm that searches via decision tree; in particular, for any algorithm that searches by comparisons of keys.

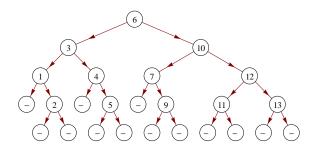
Eg.: 1 2 3 4 5 6 7 9 10 11 12 13

n = 12

x = 8 (unsucessful)

Decision tree T for searching:

```
 \begin{split} &\text{TreePlot} \left[ \{ 6 \to 3 \,,\, 6 \to 10 \,,\, 3 \to 1 \,,\, 3 \to 4 \,,\, 10 \to 7 \,,\, 10 \to 12 \,,\, 1 \to "-" \,,\, \\ &1 \to 2 \,,\, 4 \to "- \;\; " \,,\, 4 \to 5 \,,\, 7 \to " \;\; - \;\; " \,,\, 7 \to 9 \,,\, 12 \to 11 \,,\, 12 \to 13 \,,\, 2 \to " \;\; - \;\; " \,,\, \\ &5 \to " \;\; - \;\; " \,,\, 9 \to " \;\; - \;\; " \,,\, 11 \to " \;\; - \;\; " \,,\, 13 \to " \;\; - \;\; " \,,\, 2 \to " \;\; - \;\; " \,,\, \\ &5 \to " \;\; - \;\; " \,,\, 9 \to " \;\; - \;\; " \,,\, 11 \to " \;\; - \;\; " \,,\, 13 \to " \;\; - \;\; " \,,\, \\ &\text{VertexLabeling} \to \text{True} \,,\, \text{DirectedEdges} \to \text{True} \,,\, \text{VertexRenderingFunction} \to \\ &\left( \{\text{White} \,,\, \text{EdgeForm} \,[\,\text{Black}\,] \,,\, \text{Disk} \,[\,\# \,,\, 2\,] \,,\, \text{Black} \,,\, \text{Text} \,[\,\# 2\,,\, \# 1\,] \,\} \,\,\& \right) \,,\, \text{AspectRatio} \to 0.47 \,] \end{split}
```



p = the length of the longest path in T from the root to any decision node (p = 3 on the above picture)

p+1= the number of comparisons done along the longest path in T (p=4 on the above picture) N - the number of decision nodes in the decision tree

 $n \leq N$

What is the length p of a longest path (from the root down, measured by the number of edges passed) in a shortest decision tree T with N decision nodes?

We will use an example of the shortest decision tree with N decision nodes. Because all shortest decision trees with N nodes have the same depth, using that example will not constrain the generality of proof.

We define T so that all levels of T, except perhaps for the last level, are full (have maximum possible number of decision nodes). Clearly, one cannot have a shorter decision tree with N decision nodes than that.

At every level i of T, except, perhaps, for the last level p, the number of nodes is 2ⁱ. So,

$$N > 1 + 2 + 4 + \dots + 2^{p-1} = \sum_{i=0}^{p-1} 2^{i} = \sum_{i=0}^{p-1} 2^{i}$$

 $-1 + 2^{p}$

The last level p contains no more than 2 p nodes. So,

$$\begin{split} \mathbf{N} & \leq \mathbf{1} + \mathbf{2} + \mathbf{4} + \ldots + \mathbf{2}^{\mathbf{p}} = \sum_{\mathbf{i} = 0}^{\mathbf{p}} \mathbf{2}^{\mathbf{i}} = \\ & \sum_{\mathbf{i} = 0}^{\mathbf{p}} \mathbf{2}^{\mathbf{i}} \\ & -1 + 2^{1 + \mathbf{p}} \end{split}$$
 So, $-1 + 2^{\mathbf{p}} < \mathbf{N} \leq -1 + 2^{1 + \mathbf{p}}$ or $2^{\mathbf{p}} < \mathbf{N} + 1 \leq 2^{1 + \mathbf{p}}$

or
$$2^p \le N < 2^{1+p}$$

 $p \le Log2[N] < 1 + p$

or

 $p = \lfloor Log2[N] \rfloor$

$p+1 = \lfloor Log2[N] \rfloor + 1$

The above is a lower bound on the number of comparisons that any search that searches for an entry by comparing it to elements of the array must perform in the worst case.

Exercise: Prove it!

It is the depth of a shortest binary tree with N nodes.

Hence, binary search is worst case optimal in the mentioned above class of searching algorithms.