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Example of computation of worst case (Binary Search)

Result : worst - case running time

T (n) = ⌊lg2 n⌋ +1.

Binary search, ordered.

Find an item x in an ordered array I based only of comparisons of x to elements of I.

size (I) - number of elements to be searched ( = n).

I[0] ≤ I[1] ≤ I[2] ≤ ... ≤ I[i - 1] ≤

I[i] ≤ ... ≤ I[n - 1]
^

midpoint i =
n - 1

2

Formulas we will use :

For every m ∈ ℤ,

m =
m

2
+

m

2
same as m -

m

2
=

m
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m

2
=
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hence m -

m

2
=

m + 1
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Exercise : prove both (should be easy).

Note :
n

2
is performed by a binary operation "shift one position to the right".

Unsucessful search for x > I[n - 1] yields an example of worst - case number of comparisons.

If I contains no duplicates then sucessful search for x =

I[n - 1] yields an example of worst - case number of comparisons as well.

Optional exercise for smart students
Prove the above two statements.

We will prove that this worst - case number of comparisons is exactly equal to ⌊lg2 n⌋ + 1.

First, we will show, by induction on k, that the number of elements that still need to be serched
(those are the elements after the last midpoint) after k comparisons is given by this formula
n

2k



Proof by induction on k.

Basis step, k = 1.

The midpoint is
n - 1

2
, and x > I

n - 1

2
.

The number of elements of I after the midpoint is

(n - 1)(*the greatest index*) -
n - 1

2
+ 1 (*the least index*) + 1 =

= n - 1 -
n - 1

2
=

n - 1

2
=

n

2
=

n

21

This completes the basis step.

Side conclusion. While searching for an element larger than any
element of the array of m elements, after one (and unsuccessful) trial,
m

2
elements (those after the midpoint) still need to be searched.

Inductive step, k ≥ 1.

Inductive hypothesis.

Assume that after k comparisons there are

still
n

2k
elements (after the last midpoint) to be searched.

Using the above side conclusion we infer that after next
comparison the number of elements that still need to be searched is :


n

2k


2
= (* because 

n

2k
 is shifting n

k positions to the right and


n

2k+1
 is shifting n

k+1 positions to the right *)
n

2k+1

This completes the inductive step.
This completes the proof that the number of elements that still need to be serched

(those are the elements after the last midpoint) after k comparisons is given by this formula
n

2k

Now, what is the smallest k that makes the number of elements
(after the last midpoint) that still need to be searched equal to 0?

What is the smallest k that makes

n

2k
= 0?
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What is the smallest k that makes

0 ≤
n

2k
< 1?

What is the smallest k that makes
n < 2k ?

What is the smallest k that makes
n + 1 ≤ 2k ?

What is the smallest k that satisfies
lg2 (n + 1) ≤ lg2 2

k ?

What is the smallest k that satisfies
lg2 (n + 1) ≤ k ?

Answer :

⌈lg2 (n + 1)⌉

same as :

⌊lg2 n⌋ + 1

Plot[{⌈Log2[n + 1]⌉, Log2[n + 1]}, {n, 1, 127}]
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